bevy/crates/bevy_math/src/lib.rs
Matty 61a1530c56
Make bevy_math's libm feature use libm for all f32methods with unspecified precision (#14693)
# Objective

Closes #14474

Previously, the `libm` feature of bevy_math would just pass the same
feature flag down to glam. However, bevy_math itself had many uses of
floating-point arithmetic with unspecified precision. For example,
`f32::sin_cos` and `f32::powi` have unspecified precision, which means
that the exact details of their output are not guaranteed to be stable
across different systems and/or versions of Rust. This means that users
of bevy_math could observe slightly different behavior on different
systems if these methods were used.

The goal of this PR is to make it so that the `libm` feature flag
actually guarantees some degree of determinacy within bevy_math itself
by switching to the libm versions of these functions when the `libm`
feature is enabled.

## Solution

bevy_math now has an internal module `bevy_math::ops`, which re-exports
either the standard versions of the operations or the libm versions
depending on whether the `libm` feature is enabled. For example,
`ops::sin` compiles to `f32::sin` without the `libm` feature and to
`libm::sinf` with it.

This approach has a small shortfall, which is that `f32::powi` (integer
powers of floating point numbers) does not have an equivalent in `libm`.
On the other hand, this method is only used for squaring and cubing
numbers in bevy_math. Accordingly, this deficit is covered by the
introduction of a trait `ops::FloatPow`:
```rust
pub(crate) trait FloatPow {
    fn squared(self) -> Self;
    fn cubed(self) -> Self;
}
```

Next, each current usage of the unspecified-precision methods has been
replaced by its equivalent in `ops`, so that when `libm` is enabled, the
libm version is used instead. The exception, of course, is that
`.powi(2)`/`.powi(3)` have been replaced with `.squared()`/`.cubed()`.

Finally, the usage of the plain `f32` methods with unspecified precision
is now linted out of bevy_math (and hence disallowed in CI). For
example, using `f32::sin` within bevy_math produces a warning that tells
the user to use the `ops::sin` version instead.

## Testing

Ran existing tests. It would be nice to check some benchmarks on NURBS
things once #14677 merges. I'm happy to wait until then if the rest of
this PR is fine.

---

## Discussion

In the future, it might make sense to actually expose `bevy_math::ops`
as public if any downstream Bevy crates want to provide similar
determinacy guarantees. For now, it's all just `pub(crate)`.

This PR also only covers `f32`. If we find ourselves using `f64`
internally in parts of bevy_math for better robustness, we could extend
the module and lints to cover the `f64` versions easily enough.

I don't know how feasible it is, but it would also be nice if we could
standardize the bevy_math tests with the `libm` feature in CI, since
their success is currently platform-dependent (e.g. 8 of them fail on my
machine when run locally).

---------

Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-08-12 16:13:36 +00:00

66 lines
1.8 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
//! Provides math types and functionality for the Bevy game engine.
//!
//! The commonly used types are vectors like [`Vec2`] and [`Vec3`],
//! matrices like [`Mat2`], [`Mat3`] and [`Mat4`] and orientation representations
//! like [`Quat`].
mod affine3;
mod aspect_ratio;
pub mod bounding;
pub mod common_traits;
mod compass;
pub mod cubic_splines;
pub mod curve;
mod direction;
mod float_ord;
mod isometry;
mod ops;
pub mod primitives;
mod ray;
mod rects;
mod rotation2d;
#[cfg(feature = "rand")]
pub mod sampling;
pub use compass::{CompassOctant, CompassQuadrant};
pub use affine3::*;
pub use aspect_ratio::AspectRatio;
pub use common_traits::*;
pub use direction::*;
pub use float_ord::*;
pub use isometry::{Isometry2d, Isometry3d};
pub use ray::{Ray2d, Ray3d};
pub use rects::*;
pub use rotation2d::Rot2;
#[cfg(feature = "rand")]
pub use sampling::{FromRng, ShapeSample};
/// The `bevy_math` prelude.
pub mod prelude {
#[doc(hidden)]
#[cfg(feature = "rand")]
pub use crate::sampling::{FromRng, ShapeSample};
#[doc(hidden)]
pub use crate::{
cubic_splines::{
CubicBSpline, CubicBezier, CubicCardinalSpline, CubicCurve, CubicGenerator,
CubicHermite, CubicNurbs, CubicNurbsError, CubicSegment, CyclicCubicGenerator,
RationalCurve, RationalGenerator, RationalSegment,
},
direction::{Dir2, Dir3, Dir3A},
primitives::*,
BVec2, BVec3, BVec4, EulerRot, FloatExt, IRect, IVec2, IVec3, IVec4, Mat2, Mat3, Mat4,
Quat, Ray2d, Ray3d, Rect, Rot2, StableInterpolate, URect, UVec2, UVec3, UVec4, Vec2,
Vec2Swizzles, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles,
};
}
pub use glam::*;