bevy/crates/bevy_pbr/src/render/pbr_prepass_functions.wgsl
aloucks d1f3d950a1
Fix shader pre-pass compile failure when using AlphaMode::Blend and a Mesh without UVs (0.16.0-rc.2) (#18602)
# Objective

The flags are referenced later outside of the VERTEX_UVS ifdef/endif
block. The current behavior causes the pre-pass shader to fail to
compile when UVs are not present in the mesh, such as when using a
`LineStrip` to render a grid.

Fixes #18600

## Solution

Move the definition of the `flags` outside of the ifdef/endif block.

## Testing

Ran a modified `3d_example` that used a mesh and material with
alpha_mode blend, `LineStrip` topology, and no UVs.
2025-03-30 01:25:42 +00:00

103 lines
4.1 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::pbr_prepass_functions
#import bevy_render::bindless::{bindless_samplers_filtering, bindless_textures_2d}
#import bevy_pbr::{
prepass_io::VertexOutput,
prepass_bindings::previous_view_uniforms,
mesh_bindings::mesh,
mesh_view_bindings::view,
pbr_bindings,
pbr_types,
}
#ifdef BINDLESS
#import bevy_pbr::pbr_bindings::material_indices
#endif // BINDLESS
// Cutoff used for the premultiplied alpha modes BLEND, ADD, and ALPHA_TO_COVERAGE.
const PREMULTIPLIED_ALPHA_CUTOFF = 0.05;
// We can use a simplified version of alpha_discard() here since we only need to handle the alpha_cutoff
fn prepass_alpha_discard(in: VertexOutput) {
#ifdef MAY_DISCARD
#ifdef BINDLESS
let slot = mesh[in.instance_index].material_and_lightmap_bind_group_slot & 0xffffu;
var output_color: vec4<f32> = pbr_bindings::material_array[material_indices[slot].material].base_color;
let flags = pbr_bindings::material_array[material_indices[slot].material].flags;
#else // BINDLESS
var output_color: vec4<f32> = pbr_bindings::material.base_color;
let flags = pbr_bindings::material.flags;
#endif // BINDLESS
#ifdef VERTEX_UVS
#ifdef STANDARD_MATERIAL_BASE_COLOR_UV_B
var uv = in.uv_b;
#else // STANDARD_MATERIAL_BASE_COLOR_UV_B
var uv = in.uv;
#endif // STANDARD_MATERIAL_BASE_COLOR_UV_B
#ifdef BINDLESS
let uv_transform = pbr_bindings::material_array[material_indices[slot].material].uv_transform;
#else // BINDLESS
let uv_transform = pbr_bindings::material.uv_transform;
#endif // BINDLESS
uv = (uv_transform * vec3(uv, 1.0)).xy;
if (flags & pbr_types::STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u {
output_color = output_color * textureSampleBias(
#ifdef BINDLESS
bindless_textures_2d[material_indices[slot].base_color_texture],
bindless_samplers_filtering[material_indices[slot].base_color_sampler],
#else // BINDLESS
pbr_bindings::base_color_texture,
pbr_bindings::base_color_sampler,
#endif // BINDLESS
uv,
view.mip_bias
);
}
#endif // VERTEX_UVS
let alpha_mode = flags & pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_RESERVED_BITS;
if alpha_mode == pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK {
#ifdef BINDLESS
let alpha_cutoff = pbr_bindings::material_array[material_indices[slot].material].alpha_cutoff;
#else // BINDLESS
let alpha_cutoff = pbr_bindings::material.alpha_cutoff;
#endif // BINDLESS
if output_color.a < alpha_cutoff {
discard;
}
} else if (alpha_mode == pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND ||
alpha_mode == pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_ADD ||
alpha_mode == pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_ALPHA_TO_COVERAGE) {
if output_color.a < PREMULTIPLIED_ALPHA_CUTOFF {
discard;
}
} else if alpha_mode == pbr_types::STANDARD_MATERIAL_FLAGS_ALPHA_MODE_PREMULTIPLIED {
if all(output_color < vec4(PREMULTIPLIED_ALPHA_CUTOFF)) {
discard;
}
}
#endif // MAY_DISCARD
}
#ifdef MOTION_VECTOR_PREPASS
fn calculate_motion_vector(world_position: vec4<f32>, previous_world_position: vec4<f32>) -> vec2<f32> {
let clip_position_t = view.unjittered_clip_from_world * world_position;
let clip_position = clip_position_t.xy / clip_position_t.w;
let previous_clip_position_t = previous_view_uniforms.clip_from_world * previous_world_position;
let previous_clip_position = previous_clip_position_t.xy / previous_clip_position_t.w;
// These motion vectors are used as offsets to UV positions and are stored
// in the range -1,1 to allow offsetting from the one corner to the
// diagonally-opposite corner in UV coordinates, in either direction.
// A difference between diagonally-opposite corners of clip space is in the
// range -2,2, so this needs to be scaled by 0.5. And the V direction goes
// down where clip space y goes up, so y needs to be flipped.
return (clip_position - previous_clip_position) * vec2(0.5, -0.5);
}
#endif // MOTION_VECTOR_PREPASS