
The `output_index` field is only used in direct mode, and the `indirect_parameters_index` field is only used in indirect mode. Consequently, we can combine them into a single field, reducing the size of `PreprocessWorkItem`, which `batch_and_prepare_{binned,sorted}_render_phase` must construct every frame for every mesh instance, from 96 bits to 64 bits.
470 lines
19 KiB
Rust
470 lines
19 KiB
Rust
//! Demonstrates how to define and use specialized mesh pipeline
|
|
//!
|
|
//! This example shows how to use the built-in [`SpecializedMeshPipeline`]
|
|
//! functionality with a custom [`RenderCommand`] to allow custom mesh rendering with
|
|
//! more flexibility than the material api.
|
|
//!
|
|
//! [`SpecializedMeshPipeline`] let's you customize the entire pipeline used when rendering a mesh.
|
|
|
|
use bevy::{
|
|
core_pipeline::core_3d::{Opaque3d, Opaque3dBatchSetKey, Opaque3dBinKey, CORE_3D_DEPTH_FORMAT},
|
|
ecs::{component::Tick, system::StaticSystemParam},
|
|
math::{vec3, vec4},
|
|
pbr::{
|
|
DrawMesh, MeshPipeline, MeshPipelineKey, MeshPipelineViewLayoutKey, RenderMeshInstances,
|
|
SetMeshBindGroup, SetMeshViewBindGroup,
|
|
},
|
|
prelude::*,
|
|
render::{
|
|
batching::{
|
|
gpu_preprocessing::{
|
|
self, PhaseBatchedInstanceBuffers, PhaseIndirectParametersBuffers,
|
|
PreprocessWorkItem, UntypedPhaseBatchedInstanceBuffers,
|
|
},
|
|
GetBatchData, GetFullBatchData,
|
|
},
|
|
experimental::occlusion_culling::OcclusionCulling,
|
|
extract_component::{ExtractComponent, ExtractComponentPlugin},
|
|
mesh::{Indices, MeshVertexBufferLayoutRef, PrimitiveTopology, RenderMesh},
|
|
render_asset::{RenderAssetUsages, RenderAssets},
|
|
render_phase::{
|
|
AddRenderCommand, BinnedRenderPhaseType, DrawFunctions, SetItemPipeline,
|
|
ViewBinnedRenderPhases,
|
|
},
|
|
render_resource::{
|
|
ColorTargetState, ColorWrites, CompareFunction, DepthStencilState, Face, FragmentState,
|
|
FrontFace, MultisampleState, PipelineCache, PolygonMode, PrimitiveState,
|
|
RenderPipelineDescriptor, SpecializedMeshPipeline, SpecializedMeshPipelineError,
|
|
SpecializedMeshPipelines, TextureFormat, VertexState,
|
|
},
|
|
view::NoIndirectDrawing,
|
|
view::{self, ExtractedView, RenderVisibleEntities, ViewTarget, VisibilityClass},
|
|
Render, RenderApp, RenderSet,
|
|
},
|
|
};
|
|
|
|
const SHADER_ASSET_PATH: &str = "shaders/specialized_mesh_pipeline.wgsl";
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_plugins(CustomRenderedMeshPipelinePlugin)
|
|
.add_systems(Startup, setup)
|
|
.run();
|
|
}
|
|
|
|
/// Spawns the objects in the scene.
|
|
fn setup(mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>) {
|
|
// Build a custom triangle mesh with colors
|
|
// We define a custom mesh because the examples only uses a limited
|
|
// set of vertex attributes for simplicity
|
|
let mesh = Mesh::new(
|
|
PrimitiveTopology::TriangleList,
|
|
RenderAssetUsages::default(),
|
|
)
|
|
.with_inserted_indices(Indices::U32(vec![0, 1, 2]))
|
|
.with_inserted_attribute(
|
|
Mesh::ATTRIBUTE_POSITION,
|
|
vec![
|
|
vec3(-0.5, -0.5, 0.0),
|
|
vec3(0.5, -0.5, 0.0),
|
|
vec3(0.0, 0.25, 0.0),
|
|
],
|
|
)
|
|
.with_inserted_attribute(
|
|
Mesh::ATTRIBUTE_COLOR,
|
|
vec![
|
|
vec4(1.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 1.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 1.0, 1.0),
|
|
],
|
|
);
|
|
|
|
// spawn 3 triangles to show that batching works
|
|
for (x, y) in [-0.5, 0.0, 0.5].into_iter().zip([-0.25, 0.5, -0.25]) {
|
|
// Spawn an entity with all the required components for it to be rendered with our custom pipeline
|
|
commands.spawn((
|
|
// We use a marker component to identify the mesh that will be rendered
|
|
// with our specialized pipeline
|
|
CustomRenderedEntity,
|
|
// We need to add the mesh handle to the entity
|
|
Mesh3d(meshes.add(mesh.clone())),
|
|
Transform::from_xyz(x, y, 0.0),
|
|
));
|
|
}
|
|
|
|
// Spawn the camera.
|
|
commands.spawn((
|
|
Camera3d::default(),
|
|
// Move the camera back a bit to see all the triangles
|
|
Transform::from_xyz(0.0, 0.0, 3.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
));
|
|
}
|
|
|
|
// When writing custom rendering code it's generally recommended to use a plugin.
|
|
// The main reason for this is that it gives you access to the finish() hook
|
|
// which is called after rendering resources are initialized.
|
|
struct CustomRenderedMeshPipelinePlugin;
|
|
impl Plugin for CustomRenderedMeshPipelinePlugin {
|
|
fn build(&self, app: &mut App) {
|
|
app.add_plugins(ExtractComponentPlugin::<CustomRenderedEntity>::default());
|
|
|
|
// We make sure to add these to the render app, not the main app.
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
render_app
|
|
// This is needed to tell bevy about your custom pipeline
|
|
.init_resource::<SpecializedMeshPipelines<CustomMeshPipeline>>()
|
|
// We need to use a custom draw command so we need to register it
|
|
.add_render_command::<Opaque3d, DrawSpecializedPipelineCommands>()
|
|
.add_systems(Render, queue_custom_mesh_pipeline.in_set(RenderSet::Queue));
|
|
}
|
|
|
|
fn finish(&self, app: &mut App) {
|
|
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
|
|
return;
|
|
};
|
|
// Creating this pipeline needs the RenderDevice and RenderQueue
|
|
// which are only available once rendering plugins are initialized.
|
|
render_app.init_resource::<CustomMeshPipeline>();
|
|
}
|
|
}
|
|
|
|
/// A marker component that represents an entity that is to be rendered using
|
|
/// our specialized pipeline.
|
|
///
|
|
/// Note the [`ExtractComponent`] trait implementation: this is necessary to
|
|
/// tell Bevy that this object should be pulled into the render world. Also note
|
|
/// the `on_add` hook, which is needed to tell Bevy's `check_visibility` system
|
|
/// that entities with this component need to be examined for visibility.
|
|
#[derive(Clone, Component, ExtractComponent)]
|
|
#[require(VisibilityClass)]
|
|
#[component(on_add = view::add_visibility_class::<CustomRenderedEntity>)]
|
|
struct CustomRenderedEntity;
|
|
|
|
/// The custom draw commands that Bevy executes for each entity we enqueue into
|
|
/// the render phase.
|
|
type DrawSpecializedPipelineCommands = (
|
|
// Set the pipeline
|
|
SetItemPipeline,
|
|
// Set the view uniform at bind group 0
|
|
SetMeshViewBindGroup<0>,
|
|
// Set the mesh uniform at bind group 1
|
|
SetMeshBindGroup<1>,
|
|
// Draw the mesh
|
|
DrawMesh,
|
|
);
|
|
|
|
// This contains the state needed to specialize a mesh pipeline
|
|
#[derive(Resource)]
|
|
struct CustomMeshPipeline {
|
|
/// The base mesh pipeline defined by bevy
|
|
///
|
|
/// This isn't required, but if you want to use a bevy `Mesh` it's easier when you
|
|
/// have access to the base `MeshPipeline` that bevy already defines
|
|
mesh_pipeline: MeshPipeline,
|
|
/// Stores the shader used for this pipeline directly on the pipeline.
|
|
/// This isn't required, it's only done like this for simplicity.
|
|
shader_handle: Handle<Shader>,
|
|
}
|
|
impl FromWorld for CustomMeshPipeline {
|
|
fn from_world(world: &mut World) -> Self {
|
|
// Load the shader
|
|
let shader_handle: Handle<Shader> = world.resource::<AssetServer>().load(SHADER_ASSET_PATH);
|
|
Self {
|
|
mesh_pipeline: MeshPipeline::from_world(world),
|
|
shader_handle,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SpecializedMeshPipeline for CustomMeshPipeline {
|
|
/// Pipeline use keys to determine how to specialize it.
|
|
/// The key is also used by the pipeline cache to determine if
|
|
/// it needs to create a new pipeline or not
|
|
///
|
|
/// In this example we just use the base `MeshPipelineKey` defined by bevy, but this could be anything.
|
|
/// For example, if you want to make a pipeline with a procedural shader you could add the Handle<Shader> to the key.
|
|
type Key = MeshPipelineKey;
|
|
|
|
fn specialize(
|
|
&self,
|
|
mesh_key: Self::Key,
|
|
layout: &MeshVertexBufferLayoutRef,
|
|
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
|
|
// Define the vertex attributes based on a standard bevy [`Mesh`]
|
|
let mut vertex_attributes = Vec::new();
|
|
if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
|
|
// Make sure this matches the shader location
|
|
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
|
|
}
|
|
if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
|
|
// Make sure this matches the shader location
|
|
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(1));
|
|
}
|
|
// This will automatically generate the correct `VertexBufferLayout` based on the vertex attributes
|
|
let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
|
|
|
|
Ok(RenderPipelineDescriptor {
|
|
label: Some("Specialized Mesh Pipeline".into()),
|
|
layout: vec![
|
|
// Bind group 0 is the view uniform
|
|
self.mesh_pipeline
|
|
.get_view_layout(MeshPipelineViewLayoutKey::from(mesh_key))
|
|
.clone(),
|
|
// Bind group 1 is the mesh uniform
|
|
self.mesh_pipeline.mesh_layouts.model_only.clone(),
|
|
],
|
|
push_constant_ranges: vec![],
|
|
vertex: VertexState {
|
|
shader: self.shader_handle.clone(),
|
|
shader_defs: vec![],
|
|
entry_point: "vertex".into(),
|
|
// Customize how to store the meshes' vertex attributes in the vertex buffer
|
|
buffers: vec![vertex_buffer_layout],
|
|
},
|
|
fragment: Some(FragmentState {
|
|
shader: self.shader_handle.clone(),
|
|
shader_defs: vec![],
|
|
entry_point: "fragment".into(),
|
|
targets: vec![Some(ColorTargetState {
|
|
// This isn't required, but bevy supports HDR and non-HDR rendering
|
|
// so it's generally recommended to specialize the pipeline for that
|
|
format: if mesh_key.contains(MeshPipelineKey::HDR) {
|
|
ViewTarget::TEXTURE_FORMAT_HDR
|
|
} else {
|
|
TextureFormat::bevy_default()
|
|
},
|
|
// For this example we only use opaque meshes,
|
|
// but if you wanted to use alpha blending you would need to set it here
|
|
blend: None,
|
|
write_mask: ColorWrites::ALL,
|
|
})],
|
|
}),
|
|
primitive: PrimitiveState {
|
|
topology: mesh_key.primitive_topology(),
|
|
front_face: FrontFace::Ccw,
|
|
cull_mode: Some(Face::Back),
|
|
polygon_mode: PolygonMode::Fill,
|
|
..default()
|
|
},
|
|
// Note that if your view has no depth buffer this will need to be
|
|
// changed.
|
|
depth_stencil: Some(DepthStencilState {
|
|
format: CORE_3D_DEPTH_FORMAT,
|
|
depth_write_enabled: true,
|
|
depth_compare: CompareFunction::GreaterEqual,
|
|
stencil: default(),
|
|
bias: default(),
|
|
}),
|
|
// It's generally recommended to specialize your pipeline for MSAA,
|
|
// but it's not always possible
|
|
multisample: MultisampleState {
|
|
count: mesh_key.msaa_samples(),
|
|
..MultisampleState::default()
|
|
},
|
|
zero_initialize_workgroup_memory: false,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A render-world system that enqueues the entity with custom rendering into
|
|
/// the opaque render phases of each view.
|
|
fn queue_custom_mesh_pipeline(
|
|
pipeline_cache: Res<PipelineCache>,
|
|
custom_mesh_pipeline: Res<CustomMeshPipeline>,
|
|
(mut opaque_render_phases, opaque_draw_functions): (
|
|
ResMut<ViewBinnedRenderPhases<Opaque3d>>,
|
|
Res<DrawFunctions<Opaque3d>>,
|
|
),
|
|
mut specialized_mesh_pipelines: ResMut<SpecializedMeshPipelines<CustomMeshPipeline>>,
|
|
views: Query<(
|
|
&RenderVisibleEntities,
|
|
&ExtractedView,
|
|
&Msaa,
|
|
Has<NoIndirectDrawing>,
|
|
Has<OcclusionCulling>,
|
|
)>,
|
|
(render_meshes, render_mesh_instances): (
|
|
Res<RenderAssets<RenderMesh>>,
|
|
Res<RenderMeshInstances>,
|
|
),
|
|
param: StaticSystemParam<<MeshPipeline as GetBatchData>::Param>,
|
|
mut phase_batched_instance_buffers: ResMut<
|
|
PhaseBatchedInstanceBuffers<Opaque3d, <MeshPipeline as GetBatchData>::BufferData>,
|
|
>,
|
|
mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<Opaque3d>>,
|
|
mut change_tick: Local<Tick>,
|
|
) {
|
|
let system_param_item = param.into_inner();
|
|
|
|
let UntypedPhaseBatchedInstanceBuffers {
|
|
ref mut data_buffer,
|
|
ref mut work_item_buffers,
|
|
ref mut late_indexed_indirect_parameters_buffer,
|
|
ref mut late_non_indexed_indirect_parameters_buffer,
|
|
..
|
|
} = phase_batched_instance_buffers.buffers;
|
|
|
|
// Get the id for our custom draw function
|
|
let draw_function_id = opaque_draw_functions
|
|
.read()
|
|
.id::<DrawSpecializedPipelineCommands>();
|
|
|
|
// Render phases are per-view, so we need to iterate over all views so that
|
|
// the entity appears in them. (In this example, we have only one view, but
|
|
// it's good practice to loop over all views anyway.)
|
|
for (view_visible_entities, view, msaa, no_indirect_drawing, gpu_occlusion_culling) in
|
|
views.iter()
|
|
{
|
|
let Some(opaque_phase) = opaque_render_phases.get_mut(&view.retained_view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
// Create *work item buffers* if necessary. Work item buffers store the
|
|
// indices of meshes that are to be rendered when indirect drawing is
|
|
// enabled.
|
|
let work_item_buffer = gpu_preprocessing::get_or_create_work_item_buffer::<Opaque3d>(
|
|
work_item_buffers,
|
|
view.retained_view_entity,
|
|
no_indirect_drawing,
|
|
gpu_occlusion_culling,
|
|
);
|
|
|
|
// Initialize those work item buffers in preparation for this new frame.
|
|
gpu_preprocessing::init_work_item_buffers(
|
|
work_item_buffer,
|
|
late_indexed_indirect_parameters_buffer,
|
|
late_non_indexed_indirect_parameters_buffer,
|
|
);
|
|
|
|
// Create the key based on the view. In this case we only care about MSAA and HDR
|
|
let view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
|
|
| MeshPipelineKey::from_hdr(view.hdr);
|
|
|
|
// Set up a slot to hold information about the batch set we're going to
|
|
// create. If there are any of our custom meshes in the scene, we'll
|
|
// need this information in order for Bevy to kick off the rendering.
|
|
let mut mesh_batch_set_info = None;
|
|
|
|
// Find all the custom rendered entities that are visible from this
|
|
// view.
|
|
for &(render_entity, visible_entity) in
|
|
view_visible_entities.get::<CustomRenderedEntity>().iter()
|
|
{
|
|
// Get the mesh instance
|
|
let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(visible_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
|
|
// Get the mesh data
|
|
let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
|
|
continue;
|
|
};
|
|
|
|
// Specialize the key for the current mesh entity
|
|
// For this example we only specialize based on the mesh topology
|
|
// but you could have more complex keys and that's where you'd need to create those keys
|
|
let mut mesh_key = view_key;
|
|
mesh_key |= MeshPipelineKey::from_primitive_topology(mesh.primitive_topology());
|
|
|
|
// Initialize the batch set information if this was the first custom
|
|
// mesh we saw. We'll need that information later to create the
|
|
// batch set.
|
|
if mesh_batch_set_info.is_none() {
|
|
mesh_batch_set_info = Some(MeshBatchSetInfo {
|
|
indirect_parameters_index: phase_indirect_parameters_buffers
|
|
.buffers
|
|
.allocate(mesh.indexed(), 1),
|
|
is_indexed: mesh.indexed(),
|
|
});
|
|
}
|
|
let mesh_info = mesh_batch_set_info.unwrap();
|
|
|
|
// Allocate some input and output indices. We'll need these to
|
|
// create the *work item* below.
|
|
let Some(input_index) =
|
|
MeshPipeline::get_binned_index(&system_param_item, visible_entity)
|
|
else {
|
|
continue;
|
|
};
|
|
let output_index = data_buffer.add() as u32;
|
|
|
|
// Finally, we can specialize the pipeline based on the key
|
|
let pipeline_id = specialized_mesh_pipelines
|
|
.specialize(
|
|
&pipeline_cache,
|
|
&custom_mesh_pipeline,
|
|
mesh_key,
|
|
&mesh.layout,
|
|
)
|
|
// This should never with this example, but if your pipeline specialization
|
|
// can fail you need to handle the error here
|
|
.expect("Failed to specialize mesh pipeline");
|
|
|
|
// Bump the change tick so that Bevy is forced to rebuild the bin.
|
|
let next_change_tick = change_tick.get() + 1;
|
|
change_tick.set(next_change_tick);
|
|
|
|
// Add the mesh with our specialized pipeline
|
|
opaque_phase.add(
|
|
Opaque3dBatchSetKey {
|
|
draw_function: draw_function_id,
|
|
pipeline: pipeline_id,
|
|
material_bind_group_index: None,
|
|
vertex_slab: default(),
|
|
index_slab: None,
|
|
lightmap_slab: None,
|
|
},
|
|
// The asset ID is arbitrary; we simply use [`AssetId::invalid`],
|
|
// but you can use anything you like. Note that the asset ID need
|
|
// not be the ID of a [`Mesh`].
|
|
Opaque3dBinKey {
|
|
asset_id: AssetId::<Mesh>::invalid().untyped(),
|
|
},
|
|
(render_entity, visible_entity),
|
|
mesh_instance.current_uniform_index,
|
|
// This example supports batching, but if your pipeline doesn't
|
|
// support it you can use `BinnedRenderPhaseType::UnbatchableMesh`
|
|
BinnedRenderPhaseType::BatchableMesh,
|
|
*change_tick,
|
|
);
|
|
|
|
// Create a *work item*. A work item tells the Bevy renderer to
|
|
// transform the mesh on GPU.
|
|
work_item_buffer.push(
|
|
mesh.indexed(),
|
|
PreprocessWorkItem {
|
|
input_index: input_index.into(),
|
|
output_or_indirect_parameters_index: if no_indirect_drawing {
|
|
output_index
|
|
} else {
|
|
mesh_info.indirect_parameters_index
|
|
},
|
|
},
|
|
);
|
|
}
|
|
|
|
// Now if there were any meshes, we need to add a command to the
|
|
// indirect parameters buffer, so that the renderer will end up
|
|
// enqueuing a command to draw the mesh.
|
|
if let Some(mesh_info) = mesh_batch_set_info {
|
|
phase_indirect_parameters_buffers
|
|
.buffers
|
|
.add_batch_set(mesh_info.is_indexed, mesh_info.indirect_parameters_index);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we end up having any custom meshes to draw, this contains information
|
|
// needed to create the batch set.
|
|
#[derive(Clone, Copy)]
|
|
struct MeshBatchSetInfo {
|
|
/// The first index of the mesh batch in the indirect parameters buffer.
|
|
indirect_parameters_index: u32,
|
|
/// Whether the mesh is indexed (has an index buffer).
|
|
is_indexed: bool,
|
|
}
|