 dc9b486650
			
		
	
	
		dc9b486650
		
			
		
	
	
	
	
		
			
			# Objective Fix https://github.com/bevyengine/bevy/issues/11577. ## Solution Fix the examples, add a few constants to make setting light values easier, and change the default lighting settings to be more realistic. (Now designed for an overcast day instead of an indoor environment) --- I did not include any example-related changes in here. ## Changelogs (not including breaking changes) ### bevy_pbr - Added `light_consts` module (included in prelude), which contains common lux and lumen values for lights. - Added `AmbientLight::NONE` constant, which is an ambient light with a brightness of 0. - Added non-EV100 variants for `ExposureSettings`'s EV100 constants, which allow easier construction of an `ExposureSettings` from a EV100 constant. ## Breaking changes ### bevy_pbr The several default lighting values were changed: - `PointLight`'s default `intensity` is now `2000.0` - `SpotLight`'s default `intensity` is now `2000.0` - `DirectionalLight`'s default `illuminance` is now `light_consts::lux::OVERCAST_DAY` (`1000.`) - `AmbientLight`'s default `brightness` is now `20.0`
		
			
				
	
	
		
			318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Simple benchmark to test per-entity draw overhead.
 | |
| //!
 | |
| //! To measure performance realistically, be sure to run this in release mode.
 | |
| //! `cargo run --example many_cubes --release`
 | |
| //!
 | |
| //! By default, this arranges the meshes in a spherical pattern that
 | |
| //! distributes the meshes evenly.
 | |
| //!
 | |
| //! See `cargo run --example many_cubes --release -- --help` for more options.
 | |
| 
 | |
| use std::{f64::consts::PI, str::FromStr};
 | |
| 
 | |
| use argh::FromArgs;
 | |
| use bevy::{
 | |
|     diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
 | |
|     math::{DVec2, DVec3},
 | |
|     prelude::*,
 | |
|     render::{
 | |
|         render_asset::RenderAssetUsages,
 | |
|         render_resource::{Extent3d, TextureDimension, TextureFormat},
 | |
|     },
 | |
|     window::{PresentMode, WindowPlugin, WindowResolution},
 | |
|     winit::{UpdateMode, WinitSettings},
 | |
| };
 | |
| use rand::{rngs::StdRng, seq::SliceRandom, Rng, SeedableRng};
 | |
| 
 | |
| #[derive(FromArgs, Resource)]
 | |
| /// `many_cubes` stress test
 | |
| struct Args {
 | |
|     /// how the cube instances should be positioned.
 | |
|     #[argh(option, default = "Layout::Sphere")]
 | |
|     layout: Layout,
 | |
| 
 | |
|     /// whether to step the camera animation by a fixed amount such that each frame is the same across runs.
 | |
|     #[argh(switch)]
 | |
|     benchmark: bool,
 | |
| 
 | |
|     /// whether to vary the material data in each instance.
 | |
|     #[argh(switch)]
 | |
|     vary_per_instance: bool,
 | |
| 
 | |
|     /// the number of different textures from which to randomly select the material base color. 0 means no textures.
 | |
|     #[argh(option, default = "0")]
 | |
|     material_texture_count: usize,
 | |
| }
 | |
| 
 | |
| #[derive(Default, Clone)]
 | |
| enum Layout {
 | |
|     Cube,
 | |
|     #[default]
 | |
|     Sphere,
 | |
| }
 | |
| 
 | |
| impl FromStr for Layout {
 | |
|     type Err = String;
 | |
| 
 | |
|     fn from_str(s: &str) -> Result<Self, Self::Err> {
 | |
|         match s {
 | |
|             "cube" => Ok(Self::Cube),
 | |
|             "sphere" => Ok(Self::Sphere),
 | |
|             _ => Err(format!(
 | |
|                 "Unknown layout value: '{}', valid options: 'cube', 'sphere'",
 | |
|                 s
 | |
|             )),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn main() {
 | |
|     // `from_env` panics on the web
 | |
|     #[cfg(not(target_arch = "wasm32"))]
 | |
|     let args: Args = argh::from_env();
 | |
|     #[cfg(target_arch = "wasm32")]
 | |
|     let args = Args::from_args(&[], &[]).unwrap();
 | |
| 
 | |
|     App::new()
 | |
|         .add_plugins((
 | |
|             DefaultPlugins.set(WindowPlugin {
 | |
|                 primary_window: Some(Window {
 | |
|                     present_mode: PresentMode::AutoNoVsync,
 | |
|                     resolution: WindowResolution::new(1920.0, 1080.0)
 | |
|                         .with_scale_factor_override(1.0),
 | |
|                     ..default()
 | |
|                 }),
 | |
|                 ..default()
 | |
|             }),
 | |
|             FrameTimeDiagnosticsPlugin,
 | |
|             LogDiagnosticsPlugin::default(),
 | |
|         ))
 | |
|         .insert_resource(WinitSettings {
 | |
|             focused_mode: UpdateMode::Continuous,
 | |
|             unfocused_mode: UpdateMode::Continuous,
 | |
|         })
 | |
|         .insert_resource(args)
 | |
|         .add_systems(Startup, setup)
 | |
|         .add_systems(Update, (move_camera, print_mesh_count))
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| const WIDTH: usize = 200;
 | |
| const HEIGHT: usize = 200;
 | |
| 
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     args: Res<Args>,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     material_assets: ResMut<Assets<StandardMaterial>>,
 | |
|     images: ResMut<Assets<Image>>,
 | |
| ) {
 | |
|     warn!(include_str!("warning_string.txt"));
 | |
| 
 | |
|     let args = args.into_inner();
 | |
|     let images = images.into_inner();
 | |
|     let material_assets = material_assets.into_inner();
 | |
| 
 | |
|     let mesh = meshes.add(Cuboid::default());
 | |
| 
 | |
|     let material_textures = init_textures(args, images);
 | |
|     let materials = init_materials(args, &material_textures, material_assets);
 | |
| 
 | |
|     let mut material_rng = StdRng::seed_from_u64(42);
 | |
|     match args.layout {
 | |
|         Layout::Sphere => {
 | |
|             // NOTE: This pattern is good for testing performance of culling as it provides roughly
 | |
|             // the same number of visible meshes regardless of the viewing angle.
 | |
|             const N_POINTS: usize = WIDTH * HEIGHT * 4;
 | |
|             // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
 | |
|             let radius = WIDTH as f64 * 2.5;
 | |
|             let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
 | |
|             for i in 0..N_POINTS {
 | |
|                 let spherical_polar_theta_phi =
 | |
|                     fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
 | |
|                 let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
 | |
|                 commands.spawn(PbrBundle {
 | |
|                     mesh: mesh.clone(),
 | |
|                     material: materials.choose(&mut material_rng).unwrap().clone(),
 | |
|                     transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
 | |
|                     ..default()
 | |
|                 });
 | |
|             }
 | |
| 
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle::default());
 | |
|         }
 | |
|         _ => {
 | |
|             // NOTE: This pattern is good for demonstrating that frustum culling is working correctly
 | |
|             // as the number of visible meshes rises and falls depending on the viewing angle.
 | |
|             for x in 0..WIDTH {
 | |
|                 for y in 0..HEIGHT {
 | |
|                     // introduce spaces to break any kind of moiré pattern
 | |
|                     if x % 10 == 0 || y % 10 == 0 {
 | |
|                         continue;
 | |
|                     }
 | |
|                     // cube
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone(),
 | |
|                         material: materials.choose(&mut material_rng).unwrap().clone(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone(),
 | |
|                         material: materials.choose(&mut material_rng).unwrap().clone(),
 | |
|                         transform: Transform::from_xyz(
 | |
|                             (x as f32) * 2.5,
 | |
|                             HEIGHT as f32 * 2.5,
 | |
|                             (y as f32) * 2.5,
 | |
|                         ),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone(),
 | |
|                         material: materials.choose(&mut material_rng).unwrap().clone(),
 | |
|                         transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                     commands.spawn(PbrBundle {
 | |
|                         mesh: mesh.clone(),
 | |
|                         material: materials.choose(&mut material_rng).unwrap().clone(),
 | |
|                         transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
 | |
|                         ..default()
 | |
|                     });
 | |
|                 }
 | |
|             }
 | |
|             // camera
 | |
|             commands.spawn(Camera3dBundle {
 | |
|                 transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
 | |
|                 ..default()
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     commands.spawn(DirectionalLightBundle::default());
 | |
| }
 | |
| 
 | |
| fn init_textures(args: &Args, images: &mut Assets<Image>) -> Vec<Handle<Image>> {
 | |
|     let mut color_rng = StdRng::seed_from_u64(42);
 | |
|     let color_bytes: Vec<u8> = (0..(args.material_texture_count * 4))
 | |
|         .map(|i| if (i % 4) == 3 { 255 } else { color_rng.gen() })
 | |
|         .collect();
 | |
|     color_bytes
 | |
|         .chunks(4)
 | |
|         .map(|pixel| {
 | |
|             images.add(Image::new_fill(
 | |
|                 Extent3d {
 | |
|                     width: 1,
 | |
|                     height: 1,
 | |
|                     depth_or_array_layers: 1,
 | |
|                 },
 | |
|                 TextureDimension::D2,
 | |
|                 pixel,
 | |
|                 TextureFormat::Rgba8UnormSrgb,
 | |
|                 RenderAssetUsages::RENDER_WORLD,
 | |
|             ))
 | |
|         })
 | |
|         .collect()
 | |
| }
 | |
| 
 | |
| fn init_materials(
 | |
|     args: &Args,
 | |
|     textures: &[Handle<Image>],
 | |
|     assets: &mut Assets<StandardMaterial>,
 | |
| ) -> Vec<Handle<StandardMaterial>> {
 | |
|     let capacity = if args.vary_per_instance {
 | |
|         match args.layout {
 | |
|             Layout::Cube => (WIDTH - WIDTH / 10) * (HEIGHT - HEIGHT / 10),
 | |
|             Layout::Sphere => WIDTH * HEIGHT * 4,
 | |
|         }
 | |
|     } else {
 | |
|         args.material_texture_count
 | |
|     }
 | |
|     .max(1);
 | |
| 
 | |
|     let mut materials = Vec::with_capacity(capacity);
 | |
|     materials.push(assets.add(StandardMaterial {
 | |
|         base_color: Color::WHITE,
 | |
|         base_color_texture: textures.first().cloned(),
 | |
|         ..default()
 | |
|     }));
 | |
| 
 | |
|     let mut color_rng = StdRng::seed_from_u64(42);
 | |
|     let mut texture_rng = StdRng::seed_from_u64(42);
 | |
|     materials.extend(
 | |
|         std::iter::repeat_with(|| {
 | |
|             assets.add(StandardMaterial {
 | |
|                 base_color: Color::rgb_u8(color_rng.gen(), color_rng.gen(), color_rng.gen()),
 | |
|                 base_color_texture: textures.choose(&mut texture_rng).cloned(),
 | |
|                 ..default()
 | |
|             })
 | |
|         })
 | |
|         .take(capacity - materials.len()),
 | |
|     );
 | |
| 
 | |
|     materials
 | |
| }
 | |
| 
 | |
| // NOTE: This epsilon value is apparently optimal for optimizing for the average
 | |
| // nearest-neighbor distance. See:
 | |
| // http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
 | |
| // for details.
 | |
| const EPSILON: f64 = 0.36;
 | |
| 
 | |
| fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
 | |
|     DVec2::new(
 | |
|         PI * 2. * (i as f64 / golden_ratio),
 | |
|         (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
 | |
|     )
 | |
| }
 | |
| 
 | |
| fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
 | |
|     let (sin_theta, cos_theta) = p.x.sin_cos();
 | |
|     let (sin_phi, cos_phi) = p.y.sin_cos();
 | |
|     DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
 | |
| }
 | |
| 
 | |
| // System for rotating the camera
 | |
| fn move_camera(
 | |
|     time: Res<Time>,
 | |
|     args: Res<Args>,
 | |
|     mut camera_query: Query<&mut Transform, With<Camera>>,
 | |
| ) {
 | |
|     let mut camera_transform = camera_query.single_mut();
 | |
|     let delta = 0.15
 | |
|         * if args.benchmark {
 | |
|             1.0 / 60.0
 | |
|         } else {
 | |
|             time.delta_seconds()
 | |
|         };
 | |
|     camera_transform.rotate_z(delta);
 | |
|     camera_transform.rotate_x(delta);
 | |
| }
 | |
| 
 | |
| // System for printing the number of meshes on every tick of the timer
 | |
| fn print_mesh_count(
 | |
|     time: Res<Time>,
 | |
|     mut timer: Local<PrintingTimer>,
 | |
|     sprites: Query<(&Handle<Mesh>, &ViewVisibility)>,
 | |
| ) {
 | |
|     timer.tick(time.delta());
 | |
| 
 | |
|     if timer.just_finished() {
 | |
|         info!(
 | |
|             "Meshes: {} - Visible Meshes {}",
 | |
|             sprites.iter().len(),
 | |
|             sprites.iter().filter(|(_, vis)| vis.get()).count(),
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[derive(Deref, DerefMut)]
 | |
| struct PrintingTimer(Timer);
 | |
| 
 | |
| impl Default for PrintingTimer {
 | |
|     fn default() -> Self {
 | |
|         Self(Timer::from_seconds(1.0, TimerMode::Repeating))
 | |
|     }
 | |
| }
 |