bevy/crates/bevy_animation/src/lib.rs
Clar Fon 711246aa34
Update hashbrown to 0.15 (#15801)
Updating dependencies; adopted version of #15696. (Supercedes #15696.)

Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.

One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.

## Migration Guide

`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
2024-12-10 19:45:50 +00:00

1674 lines
61 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
//! Animation for the game engine Bevy
extern crate alloc;
pub mod animatable;
pub mod animation_curves;
pub mod gltf_curves;
pub mod graph;
pub mod transition;
mod util;
use core::{
any::TypeId,
cell::RefCell,
fmt::Debug,
hash::{Hash, Hasher},
iter, slice,
};
use graph::AnimationNodeType;
use prelude::AnimationCurveEvaluator;
use crate::{
graph::{AnimationGraphHandle, ThreadedAnimationGraphs},
prelude::EvaluatorId,
};
use bevy_app::{Animation, App, Plugin, PostUpdate};
use bevy_asset::{Asset, AssetApp, Assets};
use bevy_core::Name;
use bevy_ecs::{
entity::{VisitEntities, VisitEntitiesMut},
prelude::*,
reflect::{ReflectMapEntities, ReflectVisitEntities, ReflectVisitEntitiesMut},
world::EntityMutExcept,
};
use bevy_math::FloatOrd;
use bevy_reflect::{prelude::ReflectDefault, Reflect, TypePath};
use bevy_time::Time;
use bevy_transform::TransformSystem;
use bevy_utils::{
tracing::{trace, warn},
HashMap, NoOpHash, PreHashMap, PreHashMapExt, TypeIdMap,
};
use petgraph::graph::NodeIndex;
use serde::{Deserialize, Serialize};
use thread_local::ThreadLocal;
use uuid::Uuid;
/// The animation prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
#[doc(hidden)]
pub use crate::{
animatable::*, animation_curves::*, graph::*, transition::*, AnimationClip,
AnimationPlayer, AnimationPlugin, VariableCurve,
};
}
use crate::{
animation_curves::AnimationCurve,
graph::{AnimationGraph, AnimationGraphAssetLoader, AnimationNodeIndex},
transition::{advance_transitions, expire_completed_transitions, AnimationTransitions},
};
use alloc::sync::Arc;
/// The [UUID namespace] of animation targets (e.g. bones).
///
/// [UUID namespace]: https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)
pub static ANIMATION_TARGET_NAMESPACE: Uuid = Uuid::from_u128(0x3179f519d9274ff2b5966fd077023911);
/// Contains an [animation curve] which is used to animate a property of an entity.
///
/// [animation curve]: AnimationCurve
#[derive(Debug, TypePath)]
pub struct VariableCurve(pub Box<dyn AnimationCurve>);
impl Clone for VariableCurve {
fn clone(&self) -> Self {
Self(AnimationCurve::clone_value(&*self.0))
}
}
impl VariableCurve {
/// Create a new [`VariableCurve`] from an [animation curve].
///
/// [animation curve]: AnimationCurve
pub fn new(animation_curve: impl AnimationCurve) -> Self {
Self(Box::new(animation_curve))
}
}
/// A list of [`VariableCurve`]s and the [`AnimationTargetId`]s to which they
/// apply.
///
/// Because animation clips refer to targets by UUID, they can target any
/// [`AnimationTarget`] with that ID.
#[derive(Asset, Reflect, Clone, Debug, Default)]
pub struct AnimationClip {
// This field is ignored by reflection because AnimationCurves can contain things that are not reflect-able
#[reflect(ignore)]
curves: AnimationCurves,
events: AnimationEvents,
duration: f32,
}
#[derive(Reflect, Debug, Clone)]
struct TimedAnimationEvent {
time: f32,
event: AnimationEvent,
}
#[derive(Reflect, Debug, Clone)]
struct AnimationEvent {
#[reflect(ignore)]
trigger: AnimationEventFn,
}
impl AnimationEvent {
fn trigger(&self, commands: &mut Commands, entity: Entity, time: f32, weight: f32) {
(self.trigger.0)(commands, entity, time, weight);
}
}
#[derive(Reflect, Clone)]
#[reflect(opaque)]
struct AnimationEventFn(Arc<dyn Fn(&mut Commands, Entity, f32, f32) + Send + Sync>);
impl Default for AnimationEventFn {
fn default() -> Self {
Self(Arc::new(|_commands, _entity, _time, _weight| {}))
}
}
impl Debug for AnimationEventFn {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_tuple("AnimationEventFn").finish()
}
}
#[derive(Reflect, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone)]
enum AnimationEventTarget {
Root,
Node(AnimationTargetId),
}
type AnimationEvents = HashMap<AnimationEventTarget, Vec<TimedAnimationEvent>>;
/// A mapping from [`AnimationTargetId`] (e.g. bone in a skinned mesh) to the
/// animation curves.
pub type AnimationCurves = HashMap<AnimationTargetId, Vec<VariableCurve>, NoOpHash>;
/// A unique [UUID] for an animation target (e.g. bone in a skinned mesh).
///
/// The [`AnimationClip`] asset and the [`AnimationTarget`] component both use
/// this to refer to targets (e.g. bones in a skinned mesh) to be animated.
///
/// When importing an armature or an animation clip, asset loaders typically use
/// the full path name from the armature to the bone to generate these UUIDs.
/// The ID is unique to the full path name and based only on the names. So, for
/// example, any imported armature with a bone at the root named `Hips` will
/// assign the same [`AnimationTargetId`] to its root bone. Likewise, any
/// imported animation clip that animates a root bone named `Hips` will
/// reference the same [`AnimationTargetId`]. Any animation is playable on any
/// armature as long as the bone names match, which allows for easy animation
/// retargeting.
///
/// Note that asset loaders generally use the *full* path name to generate the
/// [`AnimationTargetId`]. Thus a bone named `Chest` directly connected to a
/// bone named `Hips` will have a different ID from a bone named `Chest` that's
/// connected to a bone named `Stomach`.
///
/// [UUID]: https://en.wikipedia.org/wiki/Universally_unique_identifier
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Reflect, Debug, Serialize, Deserialize)]
pub struct AnimationTargetId(pub Uuid);
impl Hash for AnimationTargetId {
fn hash<H: Hasher>(&self, state: &mut H) {
let (hi, lo) = self.0.as_u64_pair();
state.write_u64(hi ^ lo);
}
}
/// An entity that can be animated by an [`AnimationPlayer`].
///
/// These are frequently referred to as *bones* or *joints*, because they often
/// refer to individually-animatable parts of an armature.
///
/// Asset loaders for armatures are responsible for adding these as necessary.
/// Typically, they're generated from hashed versions of the entire name path
/// from the root of the armature to the bone. See the [`AnimationTargetId`]
/// documentation for more details.
///
/// By convention, asset loaders add [`AnimationTarget`] components to the
/// descendants of an [`AnimationPlayer`], as well as to the [`AnimationPlayer`]
/// entity itself, but Bevy doesn't require this in any way. So, for example,
/// it's entirely possible for an [`AnimationPlayer`] to animate a target that
/// it isn't an ancestor of. If you add a new bone to or delete a bone from an
/// armature at runtime, you may want to update the [`AnimationTarget`]
/// component as appropriate, as Bevy won't do this automatically.
///
/// Note that each entity can only be animated by one animation player at a
/// time. However, you can change [`AnimationTarget`]'s `player` property at
/// runtime to change which player is responsible for animating the entity.
#[derive(Clone, Copy, Component, Reflect, VisitEntities, VisitEntitiesMut)]
#[reflect(Component, MapEntities, VisitEntities, VisitEntitiesMut)]
pub struct AnimationTarget {
/// The ID of this animation target.
///
/// Typically, this is derived from the path.
#[visit_entities(ignore)]
pub id: AnimationTargetId,
/// The entity containing the [`AnimationPlayer`].
pub player: Entity,
}
impl AnimationClip {
#[inline]
/// [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves(&self) -> &AnimationCurves {
&self.curves
}
#[inline]
/// Get mutable references of [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves_mut(&mut self) -> &mut AnimationCurves {
&mut self.curves
}
/// Gets the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target(
&self,
target_id: AnimationTargetId,
) -> Option<&'_ Vec<VariableCurve>> {
self.curves.get(&target_id)
}
/// Gets mutable references of the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target_mut(
&mut self,
target_id: AnimationTargetId,
) -> Option<&'_ mut Vec<VariableCurve>> {
self.curves.get_mut(&target_id)
}
/// Duration of the clip, represented in seconds.
#[inline]
pub fn duration(&self) -> f32 {
self.duration
}
/// Set the duration of the clip in seconds.
#[inline]
pub fn set_duration(&mut self, duration_sec: f32) {
self.duration = duration_sec;
}
/// Adds an [`AnimationCurve`] to an [`AnimationTarget`] named by an
/// [`AnimationTargetId`].
///
/// If the curve extends beyond the current duration of this clip, this
/// method lengthens this clip to include the entire time span that the
/// curve covers.
///
/// More specifically:
/// - This clip will be sampled on the interval `[0, duration]`.
/// - Each curve in the clip is sampled by first clamping the sample time to its [domain].
/// - Curves that extend forever never contribute to the duration.
///
/// For example, a curve with domain `[2, 5]` will extend the clip to cover `[0, 5]`
/// when added and will produce the same output on the entire interval `[0, 2]` because
/// these time values all get clamped to `2`.
///
/// By contrast, a curve with domain `[-10, ∞]` will never extend the clip duration when
/// added and will be sampled only on `[0, duration]`, ignoring all negative time values.
///
/// [domain]: AnimationCurve::domain
pub fn add_curve_to_target(
&mut self,
target_id: AnimationTargetId,
curve: impl AnimationCurve,
) {
// Update the duration of the animation by this curve duration if it's longer
let end = curve.domain().end();
if end.is_finite() {
self.duration = self.duration.max(end);
}
self.curves
.entry(target_id)
.or_default()
.push(VariableCurve::new(curve));
}
/// Like [`add_curve_to_target`], but adding a [`VariableCurve`] directly.
///
/// Under normal circumstances, that method is generally more convenient.
///
/// [`add_curve_to_target`]: AnimationClip::add_curve_to_target
pub fn add_variable_curve_to_target(
&mut self,
target_id: AnimationTargetId,
variable_curve: VariableCurve,
) {
let end = variable_curve.0.domain().end();
if end.is_finite() {
self.duration = self.duration.max(end);
}
self.curves
.entry(target_id)
.or_default()
.push(variable_curve);
}
/// Add a untargeted [`Event`] to this [`AnimationClip`].
///
/// The `event` will be cloned and triggered on the [`AnimationPlayer`] entity once the `time` (in seconds)
/// is reached in the animation.
///
/// See also [`add_event_to_target`](Self::add_event_to_target).
pub fn add_event(&mut self, time: f32, event: impl Event + Clone) {
self.add_event_fn(
time,
move |commands: &mut Commands, entity: Entity, _time: f32, _weight: f32| {
commands.entity(entity).trigger(event.clone());
},
);
}
/// Add an [`Event`] to an [`AnimationTarget`] named by an [`AnimationTargetId`].
///
/// The `event` will be cloned and triggered on the entity matching the target once the `time` (in seconds)
/// is reached in the animation.
///
/// Use [`add_event`](Self::add_event) instead if you don't have a specific target.
pub fn add_event_to_target(
&mut self,
target_id: AnimationTargetId,
time: f32,
event: impl Event + Clone,
) {
self.add_event_fn_to_target(
target_id,
time,
move |commands: &mut Commands, entity: Entity, _time: f32, _weight: f32| {
commands.entity(entity).trigger(event.clone());
},
);
}
/// Add a untargeted event function to this [`AnimationClip`].
///
/// The `func` will trigger on the [`AnimationPlayer`] entity once the `time` (in seconds)
/// is reached in the animation.
///
/// For a simpler [`Event`]-based alternative, see [`AnimationClip::add_event`].
/// See also [`add_event_to_target`](Self::add_event_to_target).
///
/// ```
/// # use bevy_animation::AnimationClip;
/// # let mut clip = AnimationClip::default();
/// clip.add_event_fn(1.0, |commands, entity, time, weight| {
/// println!("Animation Event Triggered {entity:#?} at time {time} with weight {weight}");
/// })
/// ```
pub fn add_event_fn(
&mut self,
time: f32,
func: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.add_event_internal(AnimationEventTarget::Root, time, func);
}
/// Add an event function to an [`AnimationTarget`] named by an [`AnimationTargetId`].
///
/// The `func` will trigger on the entity matching the target once the `time` (in seconds)
/// is reached in the animation.
///
/// For a simpler [`Event`]-based alternative, see [`AnimationClip::add_event_to_target`].
/// Use [`add_event`](Self::add_event) instead if you don't have a specific target.
///
/// ```
/// # use bevy_animation::{AnimationClip, AnimationTargetId};
/// # let mut clip = AnimationClip::default();
/// clip.add_event_fn_to_target(AnimationTargetId::from_iter(["Arm", "Hand"]), 1.0, |commands, entity, time, weight| {
/// println!("Animation Event Triggered {entity:#?} at time {time} with weight {weight}");
/// })
/// ```
pub fn add_event_fn_to_target(
&mut self,
target_id: AnimationTargetId,
time: f32,
func: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.add_event_internal(AnimationEventTarget::Node(target_id), time, func);
}
fn add_event_internal(
&mut self,
target: AnimationEventTarget,
time: f32,
trigger_fn: impl Fn(&mut Commands, Entity, f32, f32) + Send + Sync + 'static,
) {
self.duration = self.duration.max(time);
let triggers = self.events.entry(target).or_default();
match triggers.binary_search_by_key(&FloatOrd(time), |e| FloatOrd(e.time)) {
Ok(index) | Err(index) => triggers.insert(
index,
TimedAnimationEvent {
time,
event: AnimationEvent {
trigger: AnimationEventFn(Arc::new(trigger_fn)),
},
},
),
}
}
}
/// Repetition behavior of an animation.
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
pub enum RepeatAnimation {
/// The animation will finish after running once.
#[default]
Never,
/// The animation will finish after running "n" times.
Count(u32),
/// The animation will never finish.
Forever,
}
/// Why Bevy failed to evaluate an animation.
#[derive(Clone, Debug)]
pub enum AnimationEvaluationError {
/// The component to be animated isn't present on the animation target.
///
/// To fix this error, make sure the entity to be animated contains all
/// components that have animation curves.
ComponentNotPresent(TypeId),
/// The component to be animated was present, but the property on the
/// component wasn't present.
PropertyNotPresent(TypeId),
/// An internal error occurred in the implementation of
/// [`AnimationCurveEvaluator`].
///
/// You shouldn't ordinarily see this error unless you implemented
/// [`AnimationCurveEvaluator`] yourself. The contained [`TypeId`] is the ID
/// of the curve evaluator.
InconsistentEvaluatorImplementation(TypeId),
}
/// An animation that an [`AnimationPlayer`] is currently either playing or was
/// playing, but is presently paused.
///
/// An stopped animation is considered no longer active.
#[derive(Debug, Clone, Copy, Reflect)]
pub struct ActiveAnimation {
/// The factor by which the weight from the [`AnimationGraph`] is multiplied.
weight: f32,
repeat: RepeatAnimation,
speed: f32,
/// Total time the animation has been played.
///
/// Note: Time does not increase when the animation is paused or after it has completed.
elapsed: f32,
/// The timestamp inside of the animation clip.
///
/// Note: This will always be in the range [0.0, animation clip duration]
seek_time: f32,
/// The `seek_time` of the previous tick, if any.
last_seek_time: Option<f32>,
/// Number of times the animation has completed.
/// If the animation is playing in reverse, this increments when the animation passes the start.
completions: u32,
/// `true` if the animation was completed at least once this tick.
just_completed: bool,
paused: bool,
}
impl Default for ActiveAnimation {
fn default() -> Self {
Self {
weight: 1.0,
repeat: RepeatAnimation::default(),
speed: 1.0,
elapsed: 0.0,
seek_time: 0.0,
last_seek_time: None,
completions: 0,
just_completed: false,
paused: false,
}
}
}
impl ActiveAnimation {
/// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
///
/// Note: An animation with `RepeatAnimation::Forever` will never finish.
#[inline]
pub fn is_finished(&self) -> bool {
match self.repeat {
RepeatAnimation::Forever => false,
RepeatAnimation::Never => self.completions >= 1,
RepeatAnimation::Count(n) => self.completions >= n,
}
}
/// Update the animation given the delta time and the duration of the clip being played.
#[inline]
fn update(&mut self, delta: f32, clip_duration: f32) {
self.just_completed = false;
self.last_seek_time = Some(self.seek_time);
if self.is_finished() {
return;
}
self.elapsed += delta;
self.seek_time += delta * self.speed;
let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
let under_time = self.speed < 0.0 && self.seek_time < 0.0;
if over_time || under_time {
self.just_completed = true;
self.completions += 1;
if self.is_finished() {
return;
}
}
if self.seek_time >= clip_duration {
self.seek_time %= clip_duration;
}
// Note: assumes delta is never lower than -clip_duration
if self.seek_time < 0.0 {
self.seek_time += clip_duration;
}
}
/// Reset back to the initial state as if no time has elapsed.
pub fn replay(&mut self) {
self.just_completed = false;
self.completions = 0;
self.elapsed = 0.0;
self.last_seek_time = None;
self.seek_time = 0.0;
}
/// Returns the current weight of this animation.
pub fn weight(&self) -> f32 {
self.weight
}
/// Sets the weight of this animation.
pub fn set_weight(&mut self, weight: f32) -> &mut Self {
self.weight = weight;
self
}
/// Pause the animation.
pub fn pause(&mut self) -> &mut Self {
self.paused = true;
self
}
/// Unpause the animation.
pub fn resume(&mut self) -> &mut Self {
self.paused = false;
self
}
/// Returns true if this animation is currently paused.
///
/// Note that paused animations are still [`ActiveAnimation`]s.
#[inline]
pub fn is_paused(&self) -> bool {
self.paused
}
/// Sets the repeat mode for this playing animation.
pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
self.repeat = repeat;
self
}
/// Marks this animation as repeating forever.
pub fn repeat(&mut self) -> &mut Self {
self.set_repeat(RepeatAnimation::Forever)
}
/// Returns the repeat mode assigned to this active animation.
pub fn repeat_mode(&self) -> RepeatAnimation {
self.repeat
}
/// Returns the number of times this animation has completed.
pub fn completions(&self) -> u32 {
self.completions
}
/// Returns true if the animation is playing in reverse.
pub fn is_playback_reversed(&self) -> bool {
self.speed < 0.0
}
/// Returns the speed of the animation playback.
pub fn speed(&self) -> f32 {
self.speed
}
/// Sets the speed of the animation playback.
pub fn set_speed(&mut self, speed: f32) -> &mut Self {
self.speed = speed;
self
}
/// Returns the amount of time the animation has been playing.
pub fn elapsed(&self) -> f32 {
self.elapsed
}
/// Returns the seek time of the animation.
///
/// This is nonnegative and no more than the clip duration.
pub fn seek_time(&self) -> f32 {
self.seek_time
}
/// Seeks to a specific time in the animation.
///
/// This will not trigger events between the current time and `seek_time`.
/// Use [`seek_to`](Self::seek_to) if this is desired.
pub fn set_seek_time(&mut self, seek_time: f32) -> &mut Self {
self.last_seek_time = Some(seek_time);
self.seek_time = seek_time;
self
}
/// Seeks to a specific time in the animation.
///
/// Note that any events between the current time and `seek_time`
/// will be triggered on the next update.
/// Use [`set_seek_time`](Self::set_seek_time) if this is undesired.
pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
self.last_seek_time = Some(self.seek_time);
self.seek_time = seek_time;
self
}
/// Seeks to the beginning of the animation.
///
/// Note that any events between the current time and `0.0`
/// will be triggered on the next update.
/// Use [`set_seek_time`](Self::set_seek_time) if this is undesired.
pub fn rewind(&mut self) -> &mut Self {
self.last_seek_time = Some(self.seek_time);
self.seek_time = 0.0;
self
}
}
/// Animation controls.
///
/// Automatically added to any root animations of a scene when it is
/// spawned.
#[derive(Component, Default, Reflect)]
#[reflect(Component, Default)]
pub struct AnimationPlayer {
active_animations: HashMap<AnimationNodeIndex, ActiveAnimation>,
blend_weights: HashMap<AnimationNodeIndex, f32>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl Clone for AnimationPlayer {
fn clone(&self) -> Self {
Self {
active_animations: self.active_animations.clone(),
blend_weights: self.blend_weights.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.active_animations.clone_from(&source.active_animations);
self.blend_weights.clone_from(&source.blend_weights);
}
}
/// Temporary data that the [`animate_targets`] system maintains.
#[derive(Default)]
pub struct AnimationEvaluationState {
/// Stores all [`AnimationCurveEvaluator`]s corresponding to properties that
/// we've seen so far.
///
/// This is a mapping from the id of an animation curve evaluator to
/// the animation curve evaluator itself.
///
/// For efficiency's sake, the [`AnimationCurveEvaluator`]s are cached from
/// frame to frame and animation target to animation target. Therefore,
/// there may be entries in this list corresponding to properties that the
/// current [`AnimationPlayer`] doesn't animate. To iterate only over the
/// properties that are currently being animated, consult the
/// [`Self::current_evaluators`] set.
evaluators: AnimationCurveEvaluators,
/// The set of [`AnimationCurveEvaluator`] types that the current
/// [`AnimationPlayer`] is animating.
///
/// This is built up as new curve evaluators are encountered during graph
/// traversal.
current_evaluators: CurrentEvaluators,
}
#[derive(Default)]
struct AnimationCurveEvaluators {
component_property_curve_evaluators:
PreHashMap<(TypeId, usize), Box<dyn AnimationCurveEvaluator>>,
type_id_curve_evaluators: TypeIdMap<Box<dyn AnimationCurveEvaluator>>,
}
impl AnimationCurveEvaluators {
#[inline]
pub(crate) fn get_mut(&mut self, id: EvaluatorId) -> Option<&mut dyn AnimationCurveEvaluator> {
match id {
EvaluatorId::ComponentField(component_property) => self
.component_property_curve_evaluators
.get_mut(component_property),
EvaluatorId::Type(type_id) => self.type_id_curve_evaluators.get_mut(&type_id),
}
.map(|e| &mut **e)
}
#[inline]
pub(crate) fn get_or_insert_with(
&mut self,
id: EvaluatorId,
func: impl FnOnce() -> Box<dyn AnimationCurveEvaluator>,
) -> &mut dyn AnimationCurveEvaluator {
match id {
EvaluatorId::ComponentField(component_property) => &mut **self
.component_property_curve_evaluators
.get_or_insert_with(component_property, func),
EvaluatorId::Type(type_id) => match self.type_id_curve_evaluators.entry(type_id) {
bevy_utils::hashbrown::hash_map::Entry::Occupied(occupied_entry) => {
&mut **occupied_entry.into_mut()
}
bevy_utils::hashbrown::hash_map::Entry::Vacant(vacant_entry) => {
&mut **vacant_entry.insert(func())
}
},
}
}
}
#[derive(Default)]
struct CurrentEvaluators {
component_properties: PreHashMap<(TypeId, usize), ()>,
type_ids: TypeIdMap<()>,
}
impl CurrentEvaluators {
pub(crate) fn keys(&self) -> impl Iterator<Item = EvaluatorId> {
self.component_properties
.keys()
.map(EvaluatorId::ComponentField)
.chain(self.type_ids.keys().copied().map(EvaluatorId::Type))
}
pub(crate) fn clear(
&mut self,
mut visit: impl FnMut(EvaluatorId) -> Result<(), AnimationEvaluationError>,
) -> Result<(), AnimationEvaluationError> {
for (key, _) in self.component_properties.drain() {
(visit)(EvaluatorId::ComponentField(&key))?;
}
for (key, _) in self.type_ids.drain() {
(visit)(EvaluatorId::Type(key))?;
}
Ok(())
}
#[inline]
pub(crate) fn insert(&mut self, id: EvaluatorId) {
match id {
EvaluatorId::ComponentField(component_property) => {
self.component_properties.insert(*component_property, ());
}
EvaluatorId::Type(type_id) => {
self.type_ids.insert(type_id, ());
}
}
}
}
impl AnimationPlayer {
/// Start playing an animation, restarting it if necessary.
pub fn start(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
let playing_animation = self.active_animations.entry(animation).or_default();
playing_animation.replay();
playing_animation
}
/// Start playing an animation, unless the requested animation is already playing.
pub fn play(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
self.active_animations.entry(animation).or_default()
}
/// Stops playing the given animation, removing it from the list of playing
/// animations.
pub fn stop(&mut self, animation: AnimationNodeIndex) -> &mut Self {
self.active_animations.remove(&animation);
self
}
/// Stops all currently-playing animations.
pub fn stop_all(&mut self) -> &mut Self {
self.active_animations.clear();
self
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing.
pub fn playing_animations(
&self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &ActiveAnimation)> {
self.active_animations.iter()
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing, mutably.
pub fn playing_animations_mut(
&mut self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &mut ActiveAnimation)> {
self.active_animations.iter_mut()
}
/// Returns true if the animation is currently playing or paused, or false
/// if the animation is stopped.
pub fn is_playing_animation(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
/// Check if all playing animations have finished, according to the repetition behavior.
pub fn all_finished(&self) -> bool {
self.active_animations
.values()
.all(ActiveAnimation::is_finished)
}
/// Check if all playing animations are paused.
#[doc(alias = "is_paused")]
pub fn all_paused(&self) -> bool {
self.active_animations
.values()
.all(ActiveAnimation::is_paused)
}
/// Resume all playing animations.
#[doc(alias = "pause")]
pub fn pause_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.pause();
}
self
}
/// Resume all active animations.
#[doc(alias = "resume")]
pub fn resume_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.resume();
}
self
}
/// Rewinds all active animations.
#[doc(alias = "rewind")]
pub fn rewind_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.rewind();
}
self
}
/// Multiplies the speed of all active animations by the given factor.
#[doc(alias = "set_speed")]
pub fn adjust_speeds(&mut self, factor: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_speed = playing_animation.speed() * factor;
playing_animation.set_speed(new_speed);
}
self
}
/// Seeks all active animations forward or backward by the same amount.
///
/// To seek forward, pass a positive value; to seek negative, pass a
/// negative value. Values below 0.0 or beyond the end of the animation clip
/// are clamped appropriately.
#[doc(alias = "seek_to")]
pub fn seek_all_by(&mut self, amount: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_time = playing_animation.seek_time();
playing_animation.seek_to(new_time + amount);
}
self
}
/// Returns the [`ActiveAnimation`] associated with the given animation
/// node if it's currently playing.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation(&self, animation: AnimationNodeIndex) -> Option<&ActiveAnimation> {
self.active_animations.get(&animation)
}
/// Returns a mutable reference to the [`ActiveAnimation`] associated with
/// the given animation node if it's currently active.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation_mut(&mut self, animation: AnimationNodeIndex) -> Option<&mut ActiveAnimation> {
self.active_animations.get_mut(&animation)
}
#[deprecated = "Use `is_playing_animation` instead"]
/// Returns true if the animation is currently playing or paused, or false
/// if the animation is stopped.
pub fn animation_is_playing(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
}
/// A system that triggers untargeted animation events for the currently-playing animations.
fn trigger_untargeted_animation_events(
mut commands: Commands,
clips: Res<Assets<AnimationClip>>,
graphs: Res<Assets<AnimationGraph>>,
players: Query<(Entity, &AnimationPlayer, &AnimationGraphHandle)>,
) {
for (entity, player, graph_id) in &players {
// The graph might not have loaded yet. Safely bail.
let Some(graph) = graphs.get(graph_id) else {
return;
};
for (index, active_animation) in player.active_animations.iter() {
if active_animation.paused {
continue;
}
let Some(clip) = graph
.get(*index)
.and_then(|node| match &node.node_type {
AnimationNodeType::Clip(handle) => Some(handle),
AnimationNodeType::Blend | AnimationNodeType::Add => None,
})
.and_then(|id| clips.get(id))
else {
continue;
};
let Some(triggered_events) =
TriggeredEvents::from_animation(AnimationEventTarget::Root, clip, active_animation)
else {
continue;
};
for TimedAnimationEvent { time, event } in triggered_events.iter() {
event.trigger(&mut commands, entity, *time, active_animation.weight);
}
}
}
}
/// A system that advances the time for all playing animations.
pub fn advance_animations(
time: Res<Time>,
animation_clips: Res<Assets<AnimationClip>>,
animation_graphs: Res<Assets<AnimationGraph>>,
mut players: Query<(&mut AnimationPlayer, &AnimationGraphHandle)>,
) {
let delta_seconds = time.delta_secs();
players
.par_iter_mut()
.for_each(|(mut player, graph_handle)| {
let Some(animation_graph) = animation_graphs.get(graph_handle) else {
return;
};
// Tick animations, and schedule them.
let AnimationPlayer {
ref mut active_animations,
..
} = *player;
for node_index in animation_graph.graph.node_indices() {
let node = &animation_graph[node_index];
if let Some(active_animation) = active_animations.get_mut(&node_index) {
// Tick the animation if necessary.
if !active_animation.paused {
if let AnimationNodeType::Clip(ref clip_handle) = node.node_type {
if let Some(clip) = animation_clips.get(clip_handle) {
active_animation.update(delta_seconds, clip.duration);
}
}
}
}
}
});
}
/// A type alias for [`EntityMutExcept`] as used in animation.
pub type AnimationEntityMut<'w> =
EntityMutExcept<'w, (AnimationTarget, AnimationPlayer, AnimationGraphHandle)>;
/// A system that modifies animation targets (e.g. bones in a skinned mesh)
/// according to the currently-playing animations.
pub fn animate_targets(
par_commands: ParallelCommands,
clips: Res<Assets<AnimationClip>>,
graphs: Res<Assets<AnimationGraph>>,
threaded_animation_graphs: Res<ThreadedAnimationGraphs>,
players: Query<(&AnimationPlayer, &AnimationGraphHandle)>,
mut targets: Query<(Entity, &AnimationTarget, AnimationEntityMut)>,
animation_evaluation_state: Local<ThreadLocal<RefCell<AnimationEvaluationState>>>,
) {
// Evaluate all animation targets in parallel.
targets
.par_iter_mut()
.for_each(|(entity, target, entity_mut)| {
let &AnimationTarget {
id: target_id,
player: player_id,
} = target;
let (animation_player, animation_graph_id) =
if let Ok((player, graph_handle)) = players.get(player_id) {
(player, graph_handle.id())
} else {
trace!(
"Either an animation player {:?} or a graph was missing for the target \
entity {:?} ({:?}); no animations will play this frame",
player_id,
entity_mut.id(),
entity_mut.get::<Name>(),
);
return;
};
// The graph might not have loaded yet. Safely bail.
let Some(animation_graph) = graphs.get(animation_graph_id) else {
return;
};
let Some(threaded_animation_graph) =
threaded_animation_graphs.0.get(&animation_graph_id)
else {
return;
};
// Determine which mask groups this animation target belongs to.
let target_mask = animation_graph
.mask_groups
.get(&target_id)
.cloned()
.unwrap_or_default();
let mut evaluation_state = animation_evaluation_state.get_or_default().borrow_mut();
let evaluation_state = &mut *evaluation_state;
// Evaluate the graph.
for &animation_graph_node_index in threaded_animation_graph.threaded_graph.iter() {
let Some(animation_graph_node) = animation_graph.get(animation_graph_node_index)
else {
continue;
};
match animation_graph_node.node_type {
AnimationNodeType::Blend => {
// This is a blend node.
for edge_index in threaded_animation_graph.sorted_edge_ranges
[animation_graph_node_index.index()]
.clone()
{
if let Err(err) = evaluation_state.blend_all(
threaded_animation_graph.sorted_edges[edge_index as usize],
) {
warn!("Failed to blend animation: {:?}", err);
}
}
if let Err(err) = evaluation_state.push_blend_register_all(
animation_graph_node.weight,
animation_graph_node_index,
) {
warn!("Animation blending failed: {:?}", err);
}
}
AnimationNodeType::Add => {
// This is an additive blend node.
for edge_index in threaded_animation_graph.sorted_edge_ranges
[animation_graph_node_index.index()]
.clone()
{
if let Err(err) = evaluation_state
.add_all(threaded_animation_graph.sorted_edges[edge_index as usize])
{
warn!("Failed to blend animation: {:?}", err);
}
}
if let Err(err) = evaluation_state.push_blend_register_all(
animation_graph_node.weight,
animation_graph_node_index,
) {
warn!("Animation blending failed: {:?}", err);
}
}
AnimationNodeType::Clip(ref animation_clip_handle) => {
// This is a clip node.
let Some(active_animation) = animation_player
.active_animations
.get(&animation_graph_node_index)
else {
continue;
};
// If the weight is zero or the current animation target is
// masked out, stop here.
if active_animation.weight == 0.0
|| (target_mask
& threaded_animation_graph.computed_masks
[animation_graph_node_index.index()])
!= 0
{
continue;
}
let Some(clip) = clips.get(animation_clip_handle) else {
continue;
};
if !active_animation.paused {
// Trigger all animation events that occurred this tick, if any.
if let Some(triggered_events) = TriggeredEvents::from_animation(
AnimationEventTarget::Node(target_id),
clip,
active_animation,
) {
if !triggered_events.is_empty() {
par_commands.command_scope(move |mut commands| {
for TimedAnimationEvent { time, event } in
triggered_events.iter()
{
event.trigger(
&mut commands,
entity,
*time,
active_animation.weight,
);
}
});
}
}
}
let Some(curves) = clip.curves_for_target(target_id) else {
continue;
};
let weight = active_animation.weight * animation_graph_node.weight;
let seek_time = active_animation.seek_time;
for curve in curves {
// Fetch the curve evaluator. Curve evaluator types
// are unique to each property, but shared among all
// curve types. For example, given two curve types A
// and B, `RotationCurve<A>` and `RotationCurve<B>`
// will both yield a `RotationCurveEvaluator` and
// therefore will share the same evaluator in this
// table.
let curve_evaluator_id = (*curve.0).evaluator_id();
let curve_evaluator = evaluation_state
.evaluators
.get_or_insert_with(curve_evaluator_id.clone(), || {
curve.0.create_evaluator()
});
evaluation_state
.current_evaluators
.insert(curve_evaluator_id);
if let Err(err) = AnimationCurve::apply(
&*curve.0,
curve_evaluator,
seek_time,
weight,
animation_graph_node_index,
) {
warn!("Animation application failed: {:?}", err);
}
}
}
}
}
if let Err(err) = evaluation_state.commit_all(entity_mut) {
warn!("Animation application failed: {:?}", err);
}
});
}
/// Adds animation support to an app
#[derive(Default)]
pub struct AnimationPlugin;
impl Plugin for AnimationPlugin {
fn build(&self, app: &mut App) {
app.init_asset::<AnimationClip>()
.init_asset::<AnimationGraph>()
.init_asset_loader::<AnimationGraphAssetLoader>()
.register_asset_reflect::<AnimationClip>()
.register_asset_reflect::<AnimationGraph>()
.register_type::<AnimationPlayer>()
.register_type::<AnimationTarget>()
.register_type::<AnimationTransitions>()
.register_type::<AnimationGraphHandle>()
.register_type::<NodeIndex>()
.register_type::<ThreadedAnimationGraphs>()
.init_resource::<ThreadedAnimationGraphs>()
.add_systems(
PostUpdate,
(
graph::thread_animation_graphs,
advance_transitions,
advance_animations,
// TODO: `animate_targets` can animate anything, so
// ambiguity testing currently considers it ambiguous with
// every other system in `PostUpdate`. We may want to move
// it to its own system set after `Update` but before
// `PostUpdate`. For now, we just disable ambiguity testing
// for this system.
animate_targets
.after(bevy_render::mesh::inherit_weights)
.ambiguous_with_all(),
trigger_untargeted_animation_events,
expire_completed_transitions,
)
.chain()
.in_set(Animation)
.before(TransformSystem::TransformPropagate),
);
}
}
impl AnimationTargetId {
/// Creates a new [`AnimationTargetId`] by hashing a list of names.
///
/// Typically, this will be the path from the animation root to the
/// animation target (e.g. bone) that is to be animated.
pub fn from_names<'a>(names: impl Iterator<Item = &'a Name>) -> Self {
let mut blake3 = blake3::Hasher::new();
blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
for name in names {
blake3.update(name.as_bytes());
}
let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
}
/// Creates a new [`AnimationTargetId`] by hashing a single name.
pub fn from_name(name: &Name) -> Self {
Self::from_names(iter::once(name))
}
}
impl<T: AsRef<str>> FromIterator<T> for AnimationTargetId {
/// Creates a new [`AnimationTargetId`] by hashing a list of strings.
///
/// Typically, this will be the path from the animation root to the
/// animation target (e.g. bone) that is to be animated.
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut blake3 = blake3::Hasher::new();
blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
for str in iter {
blake3.update(str.as_ref().as_bytes());
}
let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
}
}
impl From<&Name> for AnimationTargetId {
fn from(name: &Name) -> Self {
AnimationTargetId::from_name(name)
}
}
impl AnimationEvaluationState {
/// Calls [`AnimationCurveEvaluator::blend`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// The given `node_index` is the node that we're evaluating.
fn blend_all(
&mut self,
node_index: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.blend(node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::add`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// The given `node_index` is the node that we're evaluating.
fn add_all(&mut self, node_index: AnimationNodeIndex) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.add(node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::push_blend_register`] on all curve
/// evaluator types that we've been building up for a single target.
///
/// The `weight` parameter is the weight that should be pushed onto the
/// stack, while the `node_index` parameter is the node that we're
/// evaluating.
fn push_blend_register_all(
&mut self,
weight: f32,
node_index: AnimationNodeIndex,
) -> Result<(), AnimationEvaluationError> {
for curve_evaluator_type in self.current_evaluators.keys() {
self.evaluators
.get_mut(curve_evaluator_type)
.unwrap()
.push_blend_register(weight, node_index)?;
}
Ok(())
}
/// Calls [`AnimationCurveEvaluator::commit`] on all curve evaluator types
/// that we've been building up for a single target.
///
/// This is the call that actually writes the computed values into the
/// components being animated.
fn commit_all(
&mut self,
mut entity_mut: AnimationEntityMut,
) -> Result<(), AnimationEvaluationError> {
self.current_evaluators.clear(|id| {
self.evaluators
.get_mut(id)
.unwrap()
.commit(entity_mut.reborrow())
})
}
}
/// All the events from an [`AnimationClip`] that occurred this tick.
#[derive(Debug, Clone)]
struct TriggeredEvents<'a> {
direction: TriggeredEventsDir,
lower: &'a [TimedAnimationEvent],
upper: &'a [TimedAnimationEvent],
}
impl<'a> TriggeredEvents<'a> {
fn from_animation(
target: AnimationEventTarget,
clip: &'a AnimationClip,
active_animation: &ActiveAnimation,
) -> Option<Self> {
let events = clip.events.get(&target)?;
let reverse = active_animation.is_playback_reversed();
let is_finished = active_animation.is_finished();
// Return early if the animation have finished on a previous tick.
if is_finished && !active_animation.just_completed {
return None;
}
// The animation completed this tick, while still playing.
let looping = active_animation.just_completed && !is_finished;
let direction = match (reverse, looping) {
(false, false) => TriggeredEventsDir::Forward,
(false, true) => TriggeredEventsDir::ForwardLooping,
(true, false) => TriggeredEventsDir::Reverse,
(true, true) => TriggeredEventsDir::ReverseLooping,
};
let last_time = active_animation.last_seek_time?;
let this_time = active_animation.seek_time;
let (lower, upper) = match direction {
// Return all events where last_time <= event.time < this_time.
TriggeredEventsDir::Forward => {
let start = events.partition_point(|event| event.time < last_time);
// The animation finished this tick, return any remaining events.
if is_finished {
(&events[start..], &events[0..0])
} else {
let end = events.partition_point(|event| event.time < this_time);
(&events[start..end], &events[0..0])
}
}
// Return all events where this_time < event.time <= last_time.
TriggeredEventsDir::Reverse => {
let end = events.partition_point(|event| event.time <= last_time);
// The animation finished, return any remaining events.
if is_finished {
(&events[..end], &events[0..0])
} else {
let start = events.partition_point(|event| event.time <= this_time);
(&events[start..end], &events[0..0])
}
}
// The animation is looping this tick and we have to return events where
// either last_tick <= event.time or event.time < this_tick.
TriggeredEventsDir::ForwardLooping => {
let upper_start = events.partition_point(|event| event.time < last_time);
let lower_end = events.partition_point(|event| event.time < this_time);
let upper = &events[upper_start..];
let lower = &events[..lower_end];
(lower, upper)
}
// The animation is looping this tick and we have to return events where
// either last_tick >= event.time or event.time > this_tick.
TriggeredEventsDir::ReverseLooping => {
let lower_end = events.partition_point(|event| event.time <= last_time);
let upper_start = events.partition_point(|event| event.time <= this_time);
let upper = &events[upper_start..];
let lower = &events[..lower_end];
(lower, upper)
}
};
Some(Self {
direction,
lower,
upper,
})
}
fn is_empty(&self) -> bool {
self.lower.is_empty() && self.upper.is_empty()
}
fn iter(&self) -> TriggeredEventsIter {
match self.direction {
TriggeredEventsDir::Forward => TriggeredEventsIter::Forward(self.lower.iter()),
TriggeredEventsDir::Reverse => TriggeredEventsIter::Reverse(self.lower.iter().rev()),
TriggeredEventsDir::ForwardLooping => TriggeredEventsIter::ForwardLooping {
upper: self.upper.iter(),
lower: self.lower.iter(),
},
TriggeredEventsDir::ReverseLooping => TriggeredEventsIter::ReverseLooping {
lower: self.lower.iter().rev(),
upper: self.upper.iter().rev(),
},
}
}
}
#[derive(Debug, Clone, Copy)]
enum TriggeredEventsDir {
/// The animation is playing normally
Forward,
/// The animation is playing in reverse
Reverse,
/// The animation is looping this tick
ForwardLooping,
/// The animation playing in reverse and looping this tick
ReverseLooping,
}
#[derive(Debug, Clone)]
enum TriggeredEventsIter<'a> {
Forward(slice::Iter<'a, TimedAnimationEvent>),
Reverse(iter::Rev<slice::Iter<'a, TimedAnimationEvent>>),
ForwardLooping {
upper: slice::Iter<'a, TimedAnimationEvent>,
lower: slice::Iter<'a, TimedAnimationEvent>,
},
ReverseLooping {
lower: iter::Rev<slice::Iter<'a, TimedAnimationEvent>>,
upper: iter::Rev<slice::Iter<'a, TimedAnimationEvent>>,
},
}
impl<'a> Iterator for TriggeredEventsIter<'a> {
type Item = &'a TimedAnimationEvent;
fn next(&mut self) -> Option<Self::Item> {
match self {
TriggeredEventsIter::Forward(iter) => iter.next(),
TriggeredEventsIter::Reverse(rev) => rev.next(),
TriggeredEventsIter::ForwardLooping { upper, lower } => {
upper.next().or_else(|| lower.next())
}
TriggeredEventsIter::ReverseLooping { lower, upper } => {
lower.next().or_else(|| upper.next())
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Event, Reflect, Clone)]
struct A;
#[track_caller]
fn assert_triggered_events_with(
active_animation: &ActiveAnimation,
clip: &AnimationClip,
expected: impl Into<Vec<f32>>,
) {
let Some(events) =
TriggeredEvents::from_animation(AnimationEventTarget::Root, clip, active_animation)
else {
assert_eq!(expected.into(), Vec::<f32>::new());
return;
};
let got: Vec<_> = events.iter().map(|t| t.time).collect();
assert_eq!(
expected.into(),
got,
"\n{events:#?}\nlast_time: {:?}\nthis_time:{}",
active_animation.last_seek_time,
active_animation.seek_time
);
}
#[test]
fn test_multiple_events_triggers() {
let mut active_animation = ActiveAnimation {
repeat: RepeatAnimation::Forever,
..Default::default()
};
let mut clip = AnimationClip {
duration: 1.0,
..Default::default()
};
clip.add_event(0.5, A);
clip.add_event(0.5, A);
clip.add_event(0.5, A);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.8, clip.duration); // 0.0 : 0.8
assert_triggered_events_with(&active_animation, &clip, [0.5, 0.5, 0.5]);
clip.add_event(1.0, A);
clip.add_event(0.0, A);
clip.add_event(1.0, A);
clip.add_event(0.0, A);
active_animation.update(0.4, clip.duration); // 0.8 : 0.2
assert_triggered_events_with(&active_animation, &clip, [1.0, 1.0, 0.0, 0.0]);
}
#[test]
fn test_events_triggers() {
let mut active_animation = ActiveAnimation::default();
let mut clip = AnimationClip::default();
clip.add_event(0.2, A);
clip.add_event(0.0, A);
assert_eq!(0.2, clip.duration);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.2 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.speed = -1.0;
active_animation.completions = 0;
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
}
#[test]
fn test_events_triggers_looping() {
let mut active_animation = ActiveAnimation {
repeat: RepeatAnimation::Forever,
..Default::default()
};
let mut clip = AnimationClip::default();
clip.add_event(0.3, A);
clip.add_event(0.0, A);
clip.add_event(0.2, A);
assert_eq!(0.3, clip.duration);
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.2 : 0.3
assert_triggered_events_with(&active_animation, &clip, [0.2, 0.3]);
active_animation.update(0.1, clip.duration); // 0.3 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.0]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.2
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.speed = -1.0;
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.update(0.1, clip.duration); // 0.0 : 0.2
assert_triggered_events_with(&active_animation, &clip, [0.0, 0.3]);
active_animation.update(0.1, clip.duration); // 0.2 : 0.1
assert_triggered_events_with(&active_animation, &clip, [0.2]);
active_animation.update(0.1, clip.duration); // 0.1 : 0.0
assert_triggered_events_with(&active_animation, &clip, []);
active_animation.replay();
active_animation.update(clip.duration, clip.duration); // 0.0 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.0, 0.3, 0.2]);
active_animation.replay();
active_animation.seek_time = clip.duration;
active_animation.last_seek_time = Some(clip.duration);
active_animation.update(clip.duration, clip.duration); // 0.3 : 0.0
assert_triggered_events_with(&active_animation, &clip, [0.3, 0.2]);
}
}