 015f2c69ca
			
		
	
	
		015f2c69ca
		
			
		
	
	
	
	
		
			
			# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
		
			
				
	
	
		
			161 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! This example illustrates loading scenes from files.
 | |
| use bevy::{prelude::*, tasks::IoTaskPool, utils::Duration};
 | |
| use std::{fs::File, io::Write};
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins(DefaultPlugins)
 | |
|         .register_type::<ComponentA>()
 | |
|         .register_type::<ComponentB>()
 | |
|         .register_type::<ResourceA>()
 | |
|         .add_systems(
 | |
|             Startup,
 | |
|             (save_scene_system, load_scene_system, infotext_system),
 | |
|         )
 | |
|         .add_systems(Update, log_system)
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| // Registered components must implement the `Reflect` and `FromWorld` traits.
 | |
| // The `Reflect` trait enables serialization, deserialization, and dynamic property access.
 | |
| // `Reflect` enable a bunch of cool behaviors, so its worth checking out the dedicated `reflect.rs`
 | |
| // example. The `FromWorld` trait determines how your component is constructed when it loads.
 | |
| // For simple use cases you can just implement the `Default` trait (which automatically implements
 | |
| // `FromWorld`). The simplest registered component just needs these three derives:
 | |
| #[derive(Component, Reflect, Default)]
 | |
| #[reflect(Component)] // this tells the reflect derive to also reflect component behaviors
 | |
| struct ComponentA {
 | |
|     pub x: f32,
 | |
|     pub y: f32,
 | |
| }
 | |
| 
 | |
| // Some components have fields that cannot (or should not) be written to scene files. These can be
 | |
| // ignored with the #[reflect(skip_serializing)] attribute. This is also generally where the `FromWorld`
 | |
| // trait comes into play. `FromWorld` gives you access to your App's current ECS `Resources`
 | |
| // when you construct your component.
 | |
| #[derive(Component, Reflect)]
 | |
| #[reflect(Component)]
 | |
| struct ComponentB {
 | |
|     pub value: String,
 | |
|     #[reflect(skip_serializing)]
 | |
|     pub _time_since_startup: Duration,
 | |
| }
 | |
| 
 | |
| impl FromWorld for ComponentB {
 | |
|     fn from_world(world: &mut World) -> Self {
 | |
|         let time = world.resource::<Time>();
 | |
|         ComponentB {
 | |
|             _time_since_startup: time.elapsed(),
 | |
|             value: "Default Value".to_string(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Resources can be serialized in scenes as well, with the same requirements `Component`s have.
 | |
| #[derive(Resource, Reflect, Default)]
 | |
| #[reflect(Resource)]
 | |
| struct ResourceA {
 | |
|     pub score: u32,
 | |
| }
 | |
| 
 | |
| // The initial scene file will be loaded below and not change when the scene is saved
 | |
| const SCENE_FILE_PATH: &str = "scenes/load_scene_example.scn.ron";
 | |
| 
 | |
| // The new, updated scene data will be saved here so that you can see the changes
 | |
| const NEW_SCENE_FILE_PATH: &str = "scenes/load_scene_example-new.scn.ron";
 | |
| 
 | |
| fn load_scene_system(mut commands: Commands, asset_server: Res<AssetServer>) {
 | |
|     // Spawning a DynamicSceneRoot creates a new entity and spawns new instances
 | |
|     // of the given scene's entities as children of that entity.
 | |
|     // Scenes can be loaded just like any other asset.
 | |
|     commands.spawn(DynamicSceneRoot(asset_server.load(SCENE_FILE_PATH)));
 | |
| }
 | |
| 
 | |
| // This system logs all ComponentA components in our world. Try making a change to a ComponentA in
 | |
| // load_scene_example.scn. If you enable the `file_watcher` cargo feature you should immediately see
 | |
| // the changes appear in the console whenever you make a change.
 | |
| fn log_system(
 | |
|     query: Query<(Entity, &ComponentA), Changed<ComponentA>>,
 | |
|     res: Option<Res<ResourceA>>,
 | |
| ) {
 | |
|     for (entity, component_a) in &query {
 | |
|         info!("  Entity({})", entity.index());
 | |
|         info!(
 | |
|             "    ComponentA: {{ x: {} y: {} }}\n",
 | |
|             component_a.x, component_a.y
 | |
|         );
 | |
|     }
 | |
|     if let Some(res) = res {
 | |
|         if res.is_added() {
 | |
|             info!("  New ResourceA: {{ score: {} }}\n", res.score);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn save_scene_system(world: &mut World) {
 | |
|     // Scenes can be created from any ECS World.
 | |
|     // You can either create a new one for the scene or use the current World.
 | |
|     // For demonstration purposes, we'll create a new one.
 | |
|     let mut scene_world = World::new();
 | |
| 
 | |
|     // The `TypeRegistry` resource contains information about all registered types (including components).
 | |
|     // This is used to construct scenes, so we'll want to ensure that our previous type registrations
 | |
|     // exist in this new scene world as well.
 | |
|     // To do this, we can simply clone the `AppTypeRegistry` resource.
 | |
|     let type_registry = world.resource::<AppTypeRegistry>().clone();
 | |
|     scene_world.insert_resource(type_registry);
 | |
| 
 | |
|     let mut component_b = ComponentB::from_world(world);
 | |
|     component_b.value = "hello".to_string();
 | |
|     scene_world.spawn((
 | |
|         component_b,
 | |
|         ComponentA { x: 1.0, y: 2.0 },
 | |
|         Transform::IDENTITY,
 | |
|         Name::new("joe"),
 | |
|     ));
 | |
|     scene_world.spawn(ComponentA { x: 3.0, y: 4.0 });
 | |
|     scene_world.insert_resource(ResourceA { score: 1 });
 | |
| 
 | |
|     // With our sample world ready to go, we can now create our scene using DynamicScene or DynamicSceneBuilder.
 | |
|     // For simplicity, we will create our scene using DynamicScene:
 | |
|     let scene = DynamicScene::from_world(&scene_world);
 | |
| 
 | |
|     // Scenes can be serialized like this:
 | |
|     let type_registry = world.resource::<AppTypeRegistry>();
 | |
|     let type_registry = type_registry.read();
 | |
|     let serialized_scene = scene.serialize(&type_registry).unwrap();
 | |
| 
 | |
|     // Showing the scene in the console
 | |
|     info!("{}", serialized_scene);
 | |
| 
 | |
|     // Writing the scene to a new file. Using a task to avoid calling the filesystem APIs in a system
 | |
|     // as they are blocking
 | |
|     // This can't work in Wasm as there is no filesystem access
 | |
|     #[cfg(not(target_arch = "wasm32"))]
 | |
|     IoTaskPool::get()
 | |
|         .spawn(async move {
 | |
|             // Write the scene RON data to file
 | |
|             File::create(format!("assets/{NEW_SCENE_FILE_PATH}"))
 | |
|                 .and_then(|mut file| file.write(serialized_scene.as_bytes()))
 | |
|                 .expect("Error while writing scene to file");
 | |
|         })
 | |
|         .detach();
 | |
| }
 | |
| 
 | |
| // This is only necessary for the info message in the UI. See examples/ui/text.rs for a standalone
 | |
| // text example.
 | |
| fn infotext_system(mut commands: Commands) {
 | |
|     commands.spawn(Camera2d);
 | |
|     commands.spawn((
 | |
|         Text::new("Nothing to see in this window! Check the console output!"),
 | |
|         TextFont {
 | |
|             font_size: 42.0,
 | |
|             ..default()
 | |
|         },
 | |
|         Node {
 | |
|             align_self: AlignSelf::FlexEnd,
 | |
|             ..default()
 | |
|         },
 | |
|     ));
 | |
| }
 |