bevy/crates/bevy_sprite/src/render/mod.rs
noxmore 73d68d60bb
Change GpuImage::size from UVec2 to Extent3d (#16815)
# Objective

When preparing `GpuImage`s, we currently discard the
`depth_or_array_layers` of the `Image`'s size by converting it into a
`UVec2`.

Fixes #16715.

## Solution

Change `GpuImage::size` to `Extent3d`, and just pass that through when
creating `GpuImage`s.
Also copy the `aspect_ratio`, and `size` (now `size_2d` for
disambiguation from the field) functions from `Image` to `GpuImage` for
ease of use with 2D textures.
I originally copied all size-related functions (like `width`, and
`height`), but i think they are unnecessary considering how visible the
`size` field on `GpuImage` is compared to `Image`.

## Testing

Tested via `cargo r -p ci` for everything except docs, when generating
docs it keeps spitting out a ton of
```
error[E0554]: `#![feature]` may not be used on the stable release channel
 --> crates/bevy_dylib/src/lib.rs:1:21
  |
1 | #![cfg_attr(docsrs, feature(doc_auto_cfg))]
  | 
```
Not sure why this is happening, but it also happens without my changes,
so it's almost certainly some strange issue specific to my machine.

## Migration Guide

- `GpuImage::size` is now an `Extent3d`. To easily get 2D size, use
`size_2d()`.
2024-12-17 19:08:09 +00:00

886 lines
32 KiB
Rust

use core::ops::Range;
use crate::{
texture_atlas::TextureAtlasLayout, ComputedTextureSlices, Sprite, SPRITE_SHADER_HANDLE,
};
use bevy_asset::{AssetEvent, AssetId, Assets};
use bevy_color::{ColorToComponents, LinearRgba};
use bevy_core_pipeline::{
core_2d::{Transparent2d, CORE_2D_DEPTH_FORMAT},
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, DebandDither, Tonemapping,
TonemappingLuts,
},
};
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_image::{BevyDefault, Image, ImageSampler, TextureFormatPixelInfo};
use bevy_math::{Affine3A, FloatOrd, Quat, Rect, Vec2, Vec4};
use bevy_render::sync_world::MainEntity;
use bevy_render::view::RenderVisibleEntities;
use bevy_render::{
render_asset::RenderAssets,
render_phase::{
DrawFunctions, PhaseItem, PhaseItemExtraIndex, RenderCommand, RenderCommandResult,
SetItemPipeline, TrackedRenderPass, ViewSortedRenderPhases,
},
render_resource::{
binding_types::{sampler, texture_2d, uniform_buffer},
*,
},
renderer::{RenderDevice, RenderQueue},
sync_world::{RenderEntity, TemporaryRenderEntity},
texture::{DefaultImageSampler, FallbackImage, GpuImage},
view::{
ExtractedView, Msaa, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms,
ViewVisibility,
},
Extract,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::HashMap;
use bytemuck::{Pod, Zeroable};
use fixedbitset::FixedBitSet;
#[derive(Resource)]
pub struct SpritePipeline {
view_layout: BindGroupLayout,
material_layout: BindGroupLayout,
pub dummy_white_gpu_image: GpuImage,
}
impl FromWorld for SpritePipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
let tonemapping_lut_entries = get_lut_bind_group_layout_entries();
let view_layout = render_device.create_bind_group_layout(
"sprite_view_layout",
&BindGroupLayoutEntries::with_indices(
ShaderStages::VERTEX_FRAGMENT,
(
(0, uniform_buffer::<ViewUniform>(true)),
(
1,
tonemapping_lut_entries[0].visibility(ShaderStages::FRAGMENT),
),
(
2,
tonemapping_lut_entries[1].visibility(ShaderStages::FRAGMENT),
),
),
),
);
let material_layout = render_device.create_bind_group_layout(
"sprite_material_layout",
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d(TextureSampleType::Float { filterable: true }),
sampler(SamplerBindingType::Filtering),
),
),
);
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.texture_descriptor.size,
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
SpritePipeline {
view_layout,
material_layout,
dummy_white_gpu_image,
}
}
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct SpritePipelineKey: u32 {
const NONE = 0;
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
}
}
impl SpritePipelineKey {
const MSAA_MASK_BITS: u32 = 0b111;
const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u32 =
Self::MSAA_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();
#[inline]
pub const fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
#[inline]
pub const fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
#[inline]
pub const fn from_hdr(hdr: bool) -> Self {
if hdr {
SpritePipelineKey::HDR
} else {
SpritePipelineKey::NONE
}
}
}
impl SpecializedRenderPipeline for SpritePipeline {
type Key = SpritePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let mut shader_defs = Vec::new();
if key.contains(SpritePipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
1,
));
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
2,
));
let method = key.intersection(SpritePipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == SpritePipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
{
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(SpritePipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
let format = match key.contains(SpritePipelineKey::HDR) {
true => ViewTarget::TEXTURE_FORMAT_HDR,
false => TextureFormat::bevy_default(),
};
let instance_rate_vertex_buffer_layout = VertexBufferLayout {
array_stride: 80,
step_mode: VertexStepMode::Instance,
attributes: vec![
// @location(0) i_model_transpose_col0: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 0,
shader_location: 0,
},
// @location(1) i_model_transpose_col1: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 16,
shader_location: 1,
},
// @location(2) i_model_transpose_col2: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 32,
shader_location: 2,
},
// @location(3) i_color: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 48,
shader_location: 3,
},
// @location(4) i_uv_offset_scale: vec4<f32>,
VertexAttribute {
format: VertexFormat::Float32x4,
offset: 64,
shader_location: 4,
},
],
};
RenderPipelineDescriptor {
vertex: VertexState {
shader: SPRITE_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![instance_rate_vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: SPRITE_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone(), self.material_layout.clone()],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
// Sprites are always alpha blended so they never need to write to depth.
// They just need to read it in case an opaque mesh2d
// that wrote to depth is present.
depth_stencil: Some(DepthStencilState {
format: CORE_2D_DEPTH_FORMAT,
depth_write_enabled: false,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("sprite_pipeline".into()),
push_constant_ranges: Vec::new(),
zero_initialize_workgroup_memory: false,
}
}
}
pub struct ExtractedSprite {
pub transform: GlobalTransform,
pub color: LinearRgba,
/// Select an area of the texture
pub rect: Option<Rect>,
/// Change the on-screen size of the sprite
pub custom_size: Option<Vec2>,
/// Asset ID of the [`Image`] of this sprite
/// PERF: storing an `AssetId` instead of `Handle<Image>` enables some optimizations (`ExtractedSprite` becomes `Copy` and doesn't need to be dropped)
pub image_handle_id: AssetId<Image>,
pub flip_x: bool,
pub flip_y: bool,
pub anchor: Vec2,
/// For cases where additional [`ExtractedSprites`] are created during extraction, this stores the
/// entity that caused that creation for use in determining visibility.
pub original_entity: Option<Entity>,
}
#[derive(Resource, Default)]
pub struct ExtractedSprites {
pub sprites: HashMap<(Entity, MainEntity), ExtractedSprite>,
}
#[derive(Resource, Default)]
pub struct SpriteAssetEvents {
pub images: Vec<AssetEvent<Image>>,
}
pub fn extract_sprite_events(
mut events: ResMut<SpriteAssetEvents>,
mut image_events: Extract<EventReader<AssetEvent<Image>>>,
) {
let SpriteAssetEvents { ref mut images } = *events;
images.clear();
for event in image_events.read() {
images.push(*event);
}
}
pub fn extract_sprites(
mut commands: Commands,
mut extracted_sprites: ResMut<ExtractedSprites>,
texture_atlases: Extract<Res<Assets<TextureAtlasLayout>>>,
sprite_query: Extract<
Query<(
Entity,
RenderEntity,
&ViewVisibility,
&Sprite,
&GlobalTransform,
Option<&ComputedTextureSlices>,
)>,
>,
) {
extracted_sprites.sprites.clear();
for (original_entity, entity, view_visibility, sprite, transform, slices) in sprite_query.iter()
{
if !view_visibility.get() {
continue;
}
if let Some(slices) = slices {
extracted_sprites.sprites.extend(
slices
.extract_sprites(transform, original_entity, sprite)
.map(|e| {
(
(
commands.spawn(TemporaryRenderEntity).id(),
original_entity.into(),
),
e,
)
}),
);
} else {
let atlas_rect = sprite
.texture_atlas
.as_ref()
.and_then(|s| s.texture_rect(&texture_atlases).map(|r| r.as_rect()));
let rect = match (atlas_rect, sprite.rect) {
(None, None) => None,
(None, Some(sprite_rect)) => Some(sprite_rect),
(Some(atlas_rect), None) => Some(atlas_rect),
(Some(atlas_rect), Some(mut sprite_rect)) => {
sprite_rect.min += atlas_rect.min;
sprite_rect.max += atlas_rect.min;
Some(sprite_rect)
}
};
// PERF: we don't check in this function that the `Image` asset is ready, since it should be in most cases and hashing the handle is expensive
extracted_sprites.sprites.insert(
(entity, original_entity.into()),
ExtractedSprite {
color: sprite.color.into(),
transform: *transform,
rect,
// Pass the custom size
custom_size: sprite.custom_size,
flip_x: sprite.flip_x,
flip_y: sprite.flip_y,
image_handle_id: sprite.image.id(),
anchor: sprite.anchor.as_vec(),
original_entity: Some(original_entity),
},
);
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct SpriteInstance {
// Affine 4x3 transposed to 3x4
pub i_model_transpose: [Vec4; 3],
pub i_color: [f32; 4],
pub i_uv_offset_scale: [f32; 4],
}
impl SpriteInstance {
#[inline]
fn from(transform: &Affine3A, color: &LinearRgba, uv_offset_scale: &Vec4) -> Self {
let transpose_model_3x3 = transform.matrix3.transpose();
Self {
i_model_transpose: [
transpose_model_3x3.x_axis.extend(transform.translation.x),
transpose_model_3x3.y_axis.extend(transform.translation.y),
transpose_model_3x3.z_axis.extend(transform.translation.z),
],
i_color: color.to_f32_array(),
i_uv_offset_scale: uv_offset_scale.to_array(),
}
}
}
#[derive(Resource)]
pub struct SpriteMeta {
sprite_index_buffer: RawBufferVec<u32>,
sprite_instance_buffer: RawBufferVec<SpriteInstance>,
}
impl Default for SpriteMeta {
fn default() -> Self {
Self {
sprite_index_buffer: RawBufferVec::<u32>::new(BufferUsages::INDEX),
sprite_instance_buffer: RawBufferVec::<SpriteInstance>::new(BufferUsages::VERTEX),
}
}
}
#[derive(Component)]
pub struct SpriteViewBindGroup {
pub value: BindGroup,
}
#[derive(Component, PartialEq, Eq, Clone)]
pub struct SpriteBatch {
image_handle_id: AssetId<Image>,
range: Range<u32>,
}
#[derive(Resource, Default)]
pub struct ImageBindGroups {
values: HashMap<AssetId<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
pub fn queue_sprites(
mut view_entities: Local<FixedBitSet>,
draw_functions: Res<DrawFunctions<Transparent2d>>,
sprite_pipeline: Res<SpritePipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<SpritePipeline>>,
pipeline_cache: Res<PipelineCache>,
extracted_sprites: Res<ExtractedSprites>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
mut views: Query<(
Entity,
&RenderVisibleEntities,
&ExtractedView,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
)>,
) {
let draw_sprite_function = draw_functions.read().id::<DrawSprite>();
for (view_entity, visible_entities, view, msaa, tonemapping, dither) in &mut views {
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let msaa_key = SpritePipelineKey::from_msaa_samples(msaa.samples());
let mut view_key = SpritePipelineKey::from_hdr(view.hdr) | msaa_key;
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= SpritePipelineKey::TONEMAP_IN_SHADER;
view_key |= match tonemapping {
Tonemapping::None => SpritePipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => SpritePipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => {
SpritePipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE
}
Tonemapping::AcesFitted => SpritePipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => SpritePipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
SpritePipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => SpritePipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => SpritePipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
};
}
if let Some(DebandDither::Enabled) = dither {
view_key |= SpritePipelineKey::DEBAND_DITHER;
}
}
let pipeline = pipelines.specialize(&pipeline_cache, &sprite_pipeline, view_key);
view_entities.clear();
view_entities.extend(
visible_entities
.iter::<Sprite>()
.map(|(_, e)| e.index() as usize),
);
transparent_phase
.items
.reserve(extracted_sprites.sprites.len());
for ((entity, main_entity), extracted_sprite) in extracted_sprites.sprites.iter() {
let index = extracted_sprite.original_entity.unwrap_or(*entity).index();
if !view_entities.contains(index as usize) {
continue;
}
// These items will be sorted by depth with other phase items
let sort_key = FloatOrd(extracted_sprite.transform.translation().z);
// Add the item to the render phase
transparent_phase.add(Transparent2d {
draw_function: draw_sprite_function,
pipeline,
entity: (*entity, *main_entity),
sort_key,
// batch_range and dynamic_offset will be calculated in prepare_sprites
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::None,
});
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_sprite_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
sprite_pipeline: Res<SpritePipeline>,
view_uniforms: Res<ViewUniforms>,
views: Query<(Entity, &Tonemapping), With<ExtractedView>>,
tonemapping_luts: Res<TonemappingLuts>,
images: Res<RenderAssets<GpuImage>>,
fallback_image: Res<FallbackImage>,
) {
let Some(view_binding) = view_uniforms.uniforms.binding() else {
return;
};
for (entity, tonemapping) in &views {
let lut_bindings =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, &fallback_image);
let view_bind_group = render_device.create_bind_group(
"mesh2d_view_bind_group",
&sprite_pipeline.view_layout,
&BindGroupEntries::with_indices((
(0, view_binding.clone()),
(1, lut_bindings.0),
(2, lut_bindings.1),
)),
);
commands.entity(entity).insert(SpriteViewBindGroup {
value: view_bind_group,
});
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_sprite_image_bind_groups(
mut commands: Commands,
mut previous_len: Local<usize>,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut sprite_meta: ResMut<SpriteMeta>,
sprite_pipeline: Res<SpritePipeline>,
mut image_bind_groups: ResMut<ImageBindGroups>,
gpu_images: Res<RenderAssets<GpuImage>>,
extracted_sprites: Res<ExtractedSprites>,
mut phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
events: Res<SpriteAssetEvents>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Added { .. } |
// Images don't have dependencies
AssetEvent::LoadedWithDependencies { .. } => {}
AssetEvent::Unused { id } | AssetEvent::Modified { id } | AssetEvent::Removed { id } => {
image_bind_groups.values.remove(id);
}
};
}
let mut batches: Vec<(Entity, SpriteBatch)> = Vec::with_capacity(*previous_len);
// Clear the sprite instances
sprite_meta.sprite_instance_buffer.clear();
// Index buffer indices
let mut index = 0;
let image_bind_groups = &mut *image_bind_groups;
for transparent_phase in phases.values_mut() {
let mut batch_item_index = 0;
let mut batch_image_size = Vec2::ZERO;
let mut batch_image_handle = AssetId::invalid();
// Iterate through the phase items and detect when successive sprites that can be batched.
// Spawn an entity with a `SpriteBatch` component for each possible batch.
// Compatible items share the same entity.
for item_index in 0..transparent_phase.items.len() {
let item = &transparent_phase.items[item_index];
let Some(extracted_sprite) = extracted_sprites.sprites.get(&item.entity) else {
// If there is a phase item that is not a sprite, then we must start a new
// batch to draw the other phase item(s) and to respect draw order. This can be
// done by invalidating the batch_image_handle
batch_image_handle = AssetId::invalid();
continue;
};
let batch_image_changed = batch_image_handle != extracted_sprite.image_handle_id;
if batch_image_changed {
let Some(gpu_image) = gpu_images.get(extracted_sprite.image_handle_id) else {
continue;
};
batch_image_size = gpu_image.size_2d().as_vec2();
batch_image_handle = extracted_sprite.image_handle_id;
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"sprite_material_bind_group",
&sprite_pipeline.material_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
}
// By default, the size of the quad is the size of the texture
let mut quad_size = batch_image_size;
// Calculate vertex data for this item
let mut uv_offset_scale: Vec4;
// If a rect is specified, adjust UVs and the size of the quad
if let Some(rect) = extracted_sprite.rect {
let rect_size = rect.size();
uv_offset_scale = Vec4::new(
rect.min.x / batch_image_size.x,
rect.max.y / batch_image_size.y,
rect_size.x / batch_image_size.x,
-rect_size.y / batch_image_size.y,
);
quad_size = rect_size;
} else {
uv_offset_scale = Vec4::new(0.0, 1.0, 1.0, -1.0);
}
if extracted_sprite.flip_x {
uv_offset_scale.x += uv_offset_scale.z;
uv_offset_scale.z *= -1.0;
}
if extracted_sprite.flip_y {
uv_offset_scale.y += uv_offset_scale.w;
uv_offset_scale.w *= -1.0;
}
// Override the size if a custom one is specified
if let Some(custom_size) = extracted_sprite.custom_size {
quad_size = custom_size;
}
let transform = extracted_sprite.transform.affine()
* Affine3A::from_scale_rotation_translation(
quad_size.extend(1.0),
Quat::IDENTITY,
(quad_size * (-extracted_sprite.anchor - Vec2::splat(0.5))).extend(0.0),
);
// Store the vertex data and add the item to the render phase
sprite_meta
.sprite_instance_buffer
.push(SpriteInstance::from(
&transform,
&extracted_sprite.color,
&uv_offset_scale,
));
if batch_image_changed {
batch_item_index = item_index;
batches.push((
item.entity(),
SpriteBatch {
image_handle_id: batch_image_handle,
range: index..index,
},
));
}
transparent_phase.items[batch_item_index]
.batch_range_mut()
.end += 1;
batches.last_mut().unwrap().1.range.end += 1;
index += 1;
}
}
sprite_meta
.sprite_instance_buffer
.write_buffer(&render_device, &render_queue);
if sprite_meta.sprite_index_buffer.len() != 6 {
sprite_meta.sprite_index_buffer.clear();
// NOTE: This code is creating 6 indices pointing to 4 vertices.
// The vertices form the corners of a quad based on their two least significant bits.
// 10 11
//
// 00 01
// The sprite shader can then use the two least significant bits as the vertex index.
// The rest of the properties to transform the vertex positions and UVs (which are
// implicit) are baked into the instance transform, and UV offset and scale.
// See bevy_sprite/src/render/sprite.wgsl for the details.
sprite_meta.sprite_index_buffer.push(2);
sprite_meta.sprite_index_buffer.push(0);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(1);
sprite_meta.sprite_index_buffer.push(3);
sprite_meta.sprite_index_buffer.push(2);
sprite_meta
.sprite_index_buffer
.write_buffer(&render_device, &render_queue);
}
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
/// [`RenderCommand`] for sprite rendering.
pub type DrawSprite = (
SetItemPipeline,
SetSpriteViewBindGroup<0>,
SetSpriteTextureBindGroup<1>,
DrawSpriteBatch,
);
pub struct SetSpriteViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteViewBindGroup<I> {
type Param = ();
type ViewQuery = (Read<ViewUniformOffset>, Read<SpriteViewBindGroup>);
type ItemQuery = ();
fn render<'w>(
_item: &P,
(view_uniform, sprite_view_bind_group): ROQueryItem<'w, Self::ViewQuery>,
_entity: Option<()>,
_param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(I, &sprite_view_bind_group.value, &[view_uniform.offset]);
RenderCommandResult::Success
}
}
pub struct SetSpriteTextureBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetSpriteTextureBindGroup<I> {
type Param = SRes<ImageBindGroups>;
type ViewQuery = ();
type ItemQuery = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'_ SpriteBatch>,
image_bind_groups: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let image_bind_groups = image_bind_groups.into_inner();
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(
I,
image_bind_groups
.values
.get(&batch.image_handle_id)
.unwrap(),
&[],
);
RenderCommandResult::Success
}
}
pub struct DrawSpriteBatch;
impl<P: PhaseItem> RenderCommand<P> for DrawSpriteBatch {
type Param = SRes<SpriteMeta>;
type ViewQuery = ();
type ItemQuery = Read<SpriteBatch>;
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'_ SpriteBatch>,
sprite_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let sprite_meta = sprite_meta.into_inner();
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
pass.set_index_buffer(
sprite_meta.sprite_index_buffer.buffer().unwrap().slice(..),
0,
IndexFormat::Uint32,
);
pass.set_vertex_buffer(
0,
sprite_meta
.sprite_instance_buffer
.buffer()
.unwrap()
.slice(..),
);
pass.draw_indexed(0..6, 0, batch.range.clone());
RenderCommandResult::Success
}
}