# Objective Fixes #11503 ## Solution Use an empty set of args on the web. ## Discussion Maybe in the future we could wrap this so that we can use query args on the web or something, but this was the minimum changeset I could think of to keep the functionality and make them not panic on the web.
		
			
				
	
	
		
			313 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
//! Simple benchmark to test per-entity draw overhead.
 | 
						|
//!
 | 
						|
//! To measure performance realistically, be sure to run this in release mode.
 | 
						|
//! `cargo run --example many_cubes --release`
 | 
						|
//!
 | 
						|
//! By default, this arranges the meshes in a spherical pattern that
 | 
						|
//! distributes the meshes evenly.
 | 
						|
//!
 | 
						|
//! See `cargo run --example many_cubes --release -- --help` for more options.
 | 
						|
 | 
						|
use std::{f64::consts::PI, str::FromStr};
 | 
						|
 | 
						|
use argh::FromArgs;
 | 
						|
use bevy::{
 | 
						|
    diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
 | 
						|
    math::{DVec2, DVec3},
 | 
						|
    prelude::*,
 | 
						|
    render::{
 | 
						|
        render_asset::RenderAssetPersistencePolicy,
 | 
						|
        render_resource::{Extent3d, TextureDimension, TextureFormat},
 | 
						|
    },
 | 
						|
    window::{PresentMode, WindowPlugin, WindowResolution},
 | 
						|
};
 | 
						|
use rand::{rngs::StdRng, seq::SliceRandom, Rng, SeedableRng};
 | 
						|
 | 
						|
#[derive(FromArgs, Resource)]
 | 
						|
/// `many_cubes` stress test
 | 
						|
struct Args {
 | 
						|
    /// how the cube instances should be positioned.
 | 
						|
    #[argh(option, default = "Layout::Sphere")]
 | 
						|
    layout: Layout,
 | 
						|
 | 
						|
    /// whether to step the camera animation by a fixed amount such that each frame is the same across runs.
 | 
						|
    #[argh(switch)]
 | 
						|
    benchmark: bool,
 | 
						|
 | 
						|
    /// whether to vary the material data in each instance.
 | 
						|
    #[argh(switch)]
 | 
						|
    vary_per_instance: bool,
 | 
						|
 | 
						|
    /// the number of different textures from which to randomly select the material base color. 0 means no textures.
 | 
						|
    #[argh(option, default = "0")]
 | 
						|
    material_texture_count: usize,
 | 
						|
}
 | 
						|
 | 
						|
#[derive(Default, Clone)]
 | 
						|
enum Layout {
 | 
						|
    Cube,
 | 
						|
    #[default]
 | 
						|
    Sphere,
 | 
						|
}
 | 
						|
 | 
						|
impl FromStr for Layout {
 | 
						|
    type Err = String;
 | 
						|
 | 
						|
    fn from_str(s: &str) -> Result<Self, Self::Err> {
 | 
						|
        match s {
 | 
						|
            "cube" => Ok(Self::Cube),
 | 
						|
            "sphere" => Ok(Self::Sphere),
 | 
						|
            _ => Err(format!(
 | 
						|
                "Unknown layout value: '{}', valid options: 'cube', 'sphere'",
 | 
						|
                s
 | 
						|
            )),
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
fn main() {
 | 
						|
    // `from_env` panics on the web
 | 
						|
    #[cfg(not(target_arch = "wasm32"))]
 | 
						|
    let args: Args = argh::from_env();
 | 
						|
    #[cfg(target_arch = "wasm32")]
 | 
						|
    let args = Args::from_args(&[], &[]).unwrap();
 | 
						|
 | 
						|
    App::new()
 | 
						|
        .add_plugins((
 | 
						|
            DefaultPlugins.set(WindowPlugin {
 | 
						|
                primary_window: Some(Window {
 | 
						|
                    present_mode: PresentMode::AutoNoVsync,
 | 
						|
                    resolution: WindowResolution::new(1920.0, 1080.0)
 | 
						|
                        .with_scale_factor_override(1.0),
 | 
						|
                    ..default()
 | 
						|
                }),
 | 
						|
                ..default()
 | 
						|
            }),
 | 
						|
            FrameTimeDiagnosticsPlugin,
 | 
						|
            LogDiagnosticsPlugin::default(),
 | 
						|
        ))
 | 
						|
        .insert_resource(args)
 | 
						|
        .add_systems(Startup, setup)
 | 
						|
        .add_systems(Update, (move_camera, print_mesh_count))
 | 
						|
        .run();
 | 
						|
}
 | 
						|
 | 
						|
const WIDTH: usize = 200;
 | 
						|
const HEIGHT: usize = 200;
 | 
						|
 | 
						|
fn setup(
 | 
						|
    mut commands: Commands,
 | 
						|
    args: Res<Args>,
 | 
						|
    mut meshes: ResMut<Assets<Mesh>>,
 | 
						|
    material_assets: ResMut<Assets<StandardMaterial>>,
 | 
						|
    images: ResMut<Assets<Image>>,
 | 
						|
) {
 | 
						|
    warn!(include_str!("warning_string.txt"));
 | 
						|
 | 
						|
    let args = args.into_inner();
 | 
						|
    let images = images.into_inner();
 | 
						|
    let material_assets = material_assets.into_inner();
 | 
						|
 | 
						|
    let mesh = meshes.add(shape::Cube { size: 1.0 });
 | 
						|
 | 
						|
    let material_textures = init_textures(args, images);
 | 
						|
    let materials = init_materials(args, &material_textures, material_assets);
 | 
						|
 | 
						|
    let mut material_rng = StdRng::seed_from_u64(42);
 | 
						|
    match args.layout {
 | 
						|
        Layout::Sphere => {
 | 
						|
            // NOTE: This pattern is good for testing performance of culling as it provides roughly
 | 
						|
            // the same number of visible meshes regardless of the viewing angle.
 | 
						|
            const N_POINTS: usize = WIDTH * HEIGHT * 4;
 | 
						|
            // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
 | 
						|
            let radius = WIDTH as f64 * 2.5;
 | 
						|
            let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
 | 
						|
            for i in 0..N_POINTS {
 | 
						|
                let spherical_polar_theta_phi =
 | 
						|
                    fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
 | 
						|
                let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
 | 
						|
                commands.spawn(PbrBundle {
 | 
						|
                    mesh: mesh.clone(),
 | 
						|
                    material: materials.choose(&mut material_rng).unwrap().clone(),
 | 
						|
                    transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
 | 
						|
                    ..default()
 | 
						|
                });
 | 
						|
            }
 | 
						|
 | 
						|
            // camera
 | 
						|
            commands.spawn(Camera3dBundle::default());
 | 
						|
        }
 | 
						|
        _ => {
 | 
						|
            // NOTE: This pattern is good for demonstrating that frustum culling is working correctly
 | 
						|
            // as the number of visible meshes rises and falls depending on the viewing angle.
 | 
						|
            for x in 0..WIDTH {
 | 
						|
                for y in 0..HEIGHT {
 | 
						|
                    // introduce spaces to break any kind of moiré pattern
 | 
						|
                    if x % 10 == 0 || y % 10 == 0 {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    // cube
 | 
						|
                    commands.spawn(PbrBundle {
 | 
						|
                        mesh: mesh.clone(),
 | 
						|
                        material: materials.choose(&mut material_rng).unwrap().clone(),
 | 
						|
                        transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
 | 
						|
                        ..default()
 | 
						|
                    });
 | 
						|
                    commands.spawn(PbrBundle {
 | 
						|
                        mesh: mesh.clone(),
 | 
						|
                        material: materials.choose(&mut material_rng).unwrap().clone(),
 | 
						|
                        transform: Transform::from_xyz(
 | 
						|
                            (x as f32) * 2.5,
 | 
						|
                            HEIGHT as f32 * 2.5,
 | 
						|
                            (y as f32) * 2.5,
 | 
						|
                        ),
 | 
						|
                        ..default()
 | 
						|
                    });
 | 
						|
                    commands.spawn(PbrBundle {
 | 
						|
                        mesh: mesh.clone(),
 | 
						|
                        material: materials.choose(&mut material_rng).unwrap().clone(),
 | 
						|
                        transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
 | 
						|
                        ..default()
 | 
						|
                    });
 | 
						|
                    commands.spawn(PbrBundle {
 | 
						|
                        mesh: mesh.clone(),
 | 
						|
                        material: materials.choose(&mut material_rng).unwrap().clone(),
 | 
						|
                        transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
 | 
						|
                        ..default()
 | 
						|
                    });
 | 
						|
                }
 | 
						|
            }
 | 
						|
            // camera
 | 
						|
            commands.spawn(Camera3dBundle {
 | 
						|
                transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
 | 
						|
                ..default()
 | 
						|
            });
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    commands.spawn(DirectionalLightBundle { ..default() });
 | 
						|
}
 | 
						|
 | 
						|
fn init_textures(args: &Args, images: &mut Assets<Image>) -> Vec<Handle<Image>> {
 | 
						|
    let mut color_rng = StdRng::seed_from_u64(42);
 | 
						|
    let color_bytes: Vec<u8> = (0..(args.material_texture_count * 4))
 | 
						|
        .map(|i| if (i % 4) == 3 { 255 } else { color_rng.gen() })
 | 
						|
        .collect();
 | 
						|
    color_bytes
 | 
						|
        .chunks(4)
 | 
						|
        .map(|pixel| {
 | 
						|
            images.add(Image::new_fill(
 | 
						|
                Extent3d {
 | 
						|
                    width: 1,
 | 
						|
                    height: 1,
 | 
						|
                    depth_or_array_layers: 1,
 | 
						|
                },
 | 
						|
                TextureDimension::D2,
 | 
						|
                pixel,
 | 
						|
                TextureFormat::Rgba8UnormSrgb,
 | 
						|
                RenderAssetPersistencePolicy::Unload,
 | 
						|
            ))
 | 
						|
        })
 | 
						|
        .collect()
 | 
						|
}
 | 
						|
 | 
						|
fn init_materials(
 | 
						|
    args: &Args,
 | 
						|
    textures: &[Handle<Image>],
 | 
						|
    assets: &mut Assets<StandardMaterial>,
 | 
						|
) -> Vec<Handle<StandardMaterial>> {
 | 
						|
    let capacity = if args.vary_per_instance {
 | 
						|
        match args.layout {
 | 
						|
            Layout::Cube => (WIDTH - WIDTH / 10) * (HEIGHT - HEIGHT / 10),
 | 
						|
            Layout::Sphere => WIDTH * HEIGHT * 4,
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        args.material_texture_count
 | 
						|
    }
 | 
						|
    .max(1);
 | 
						|
 | 
						|
    let mut materials = Vec::with_capacity(capacity);
 | 
						|
    materials.push(assets.add(StandardMaterial {
 | 
						|
        base_color: Color::WHITE,
 | 
						|
        base_color_texture: textures.first().cloned(),
 | 
						|
        ..default()
 | 
						|
    }));
 | 
						|
 | 
						|
    let mut color_rng = StdRng::seed_from_u64(42);
 | 
						|
    let mut texture_rng = StdRng::seed_from_u64(42);
 | 
						|
    materials.extend(
 | 
						|
        std::iter::repeat_with(|| {
 | 
						|
            assets.add(StandardMaterial {
 | 
						|
                base_color: Color::rgb_u8(color_rng.gen(), color_rng.gen(), color_rng.gen()),
 | 
						|
                base_color_texture: textures.choose(&mut texture_rng).cloned(),
 | 
						|
                ..default()
 | 
						|
            })
 | 
						|
        })
 | 
						|
        .take(capacity - materials.len()),
 | 
						|
    );
 | 
						|
 | 
						|
    materials
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: This epsilon value is apparently optimal for optimizing for the average
 | 
						|
// nearest-neighbor distance. See:
 | 
						|
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
 | 
						|
// for details.
 | 
						|
const EPSILON: f64 = 0.36;
 | 
						|
 | 
						|
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
 | 
						|
    DVec2::new(
 | 
						|
        PI * 2. * (i as f64 / golden_ratio),
 | 
						|
        (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
 | 
						|
    )
 | 
						|
}
 | 
						|
 | 
						|
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
 | 
						|
    let (sin_theta, cos_theta) = p.x.sin_cos();
 | 
						|
    let (sin_phi, cos_phi) = p.y.sin_cos();
 | 
						|
    DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
 | 
						|
}
 | 
						|
 | 
						|
// System for rotating the camera
 | 
						|
fn move_camera(
 | 
						|
    time: Res<Time>,
 | 
						|
    args: Res<Args>,
 | 
						|
    mut camera_query: Query<&mut Transform, With<Camera>>,
 | 
						|
) {
 | 
						|
    let mut camera_transform = camera_query.single_mut();
 | 
						|
    let delta = 0.15
 | 
						|
        * if args.benchmark {
 | 
						|
            1.0 / 60.0
 | 
						|
        } else {
 | 
						|
            time.delta_seconds()
 | 
						|
        };
 | 
						|
    camera_transform.rotate_z(delta);
 | 
						|
    camera_transform.rotate_x(delta);
 | 
						|
}
 | 
						|
 | 
						|
// System for printing the number of meshes on every tick of the timer
 | 
						|
fn print_mesh_count(
 | 
						|
    time: Res<Time>,
 | 
						|
    mut timer: Local<PrintingTimer>,
 | 
						|
    sprites: Query<(&Handle<Mesh>, &ViewVisibility)>,
 | 
						|
) {
 | 
						|
    timer.tick(time.delta());
 | 
						|
 | 
						|
    if timer.just_finished() {
 | 
						|
        info!(
 | 
						|
            "Meshes: {} - Visible Meshes {}",
 | 
						|
            sprites.iter().len(),
 | 
						|
            sprites.iter().filter(|(_, vis)| vis.get()).count(),
 | 
						|
        );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#[derive(Deref, DerefMut)]
 | 
						|
struct PrintingTimer(Timer);
 | 
						|
 | 
						|
impl Default for PrintingTimer {
 | 
						|
    fn default() -> Self {
 | 
						|
        Self(Timer::from_seconds(1.0, TimerMode::Repeating))
 | 
						|
    }
 | 
						|
}
 |