bevy/crates/bevy_ecs/src/spawn.rs
krunchington f1331069e7
Implement SpawnableList for Vec<Bundle> (#18259)
# Objective

In updating examples to use the Improved Spawning API I got tripped up
on being able to spawn children with a Vec. I eventually figured out
that I could use `Children::spawn(SpawnIter(my_vec.into_iter()))` but
thought there might be a more ergonomic way to approach it. After
tinkering with it for a while I came up with the implementation here. It
allows authors to use `Children::spawn(my_vec)` as an equivalent
implementation.

## Solution

- Implements `<R: Relationship, B: Bundle SpawnableList<R> for Vec<B>`
- uses `alloc::vec::Vec` for compatibility with `no_std` (`std::Vec`
also inherits implementations against the `alloc::vec::Vec` because std
is a re-export of the alloc struct, thanks @bushrat011899 for the info
on this!)

## Testing

- Did you test these changes? If so, how?
- Opened the examples before and after and verified the same behavior
was observed. I did this on Ubuntu 24.04.2 LTS using `--features
wayland`.
- Are there any parts that need more testing?
- Other OS's and features can't hurt, but this is such a small change it
shouldn't be a problem.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
  - Run the examples yourself with and without these changes.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - see above

## Showcase

n/a

## Migration Guide

- Optional: you may use the new API to spawn `Vec`s of `Bundle` instead
of using the `SpawnIter` approach.
2025-03-11 20:32:37 +00:00

364 lines
13 KiB
Rust

//! Entity spawning abstractions, largely focused on spawning related hierarchies of entities. See [`related`](crate::related) and [`SpawnRelated`]
//! for the best entry points into these APIs and examples of how to use them.
use crate::{
bundle::{Bundle, BundleEffect, DynamicBundle, NoBundleEffect},
entity::Entity,
relationship::{RelatedSpawner, Relationship, RelationshipTarget},
world::{EntityWorldMut, World},
};
use alloc::vec::Vec;
use core::marker::PhantomData;
use variadics_please::all_tuples;
/// A wrapper over a [`Bundle`] indicating that an entity should be spawned with that [`Bundle`].
/// This is intended to be used for hierarchical spawning via traits like [`SpawnableList`] and [`SpawnRelated`].
///
/// Also see the [`children`](crate::children) and [`related`](crate::related) macros that abstract over the [`Spawn`] API.
///
/// ```
/// # use bevy_ecs::hierarchy::Children;
/// # use bevy_ecs::spawn::{Spawn, SpawnRelated};
/// # use bevy_ecs::name::Name;
/// # use bevy_ecs::world::World;
/// let mut world = World::new();
/// world.spawn((
/// Name::new("Root"),
/// Children::spawn((
/// Spawn(Name::new("Child1")),
/// Spawn((
/// Name::new("Child2"),
/// Children::spawn(Spawn(Name::new("Grandchild"))),
/// ))
/// )),
/// ));
/// ```
pub struct Spawn<B: Bundle>(pub B);
/// A spawn-able list of changes to a given [`World`] and relative to a given [`Entity`]. This is generally used
/// for spawning "related" entities, such as children.
pub trait SpawnableList<R> {
/// Spawn this list of changes in a given [`World`] and relative to a given [`Entity`]. This is generally used
/// for spawning "related" entities, such as children.
fn spawn(self, world: &mut World, entity: Entity);
/// Returns a size hint, which is used to reserve space for this list in a [`RelationshipTarget`]. This should be
/// less than or equal to the actual size of the list. When in doubt, just use 0.
fn size_hint(&self) -> usize;
}
impl<R: Relationship, B: Bundle<Effect: NoBundleEffect>> SpawnableList<R> for Vec<B> {
fn spawn(self, world: &mut World, entity: Entity) {
let mapped_bundles = self.into_iter().map(|b| (R::from(entity), b));
world.spawn_batch(mapped_bundles);
}
fn size_hint(&self) -> usize {
self.len()
}
}
impl<R: Relationship, B: Bundle> SpawnableList<R> for Spawn<B> {
fn spawn(self, world: &mut World, entity: Entity) {
world.spawn((R::from(entity), self.0));
}
fn size_hint(&self) -> usize {
1
}
}
/// A [`SpawnableList`] that spawns entities using an iterator of a given [`Bundle`]:
///
/// ```
/// # use bevy_ecs::hierarchy::Children;
/// # use bevy_ecs::spawn::{Spawn, SpawnIter, SpawnRelated};
/// # use bevy_ecs::name::Name;
/// # use bevy_ecs::world::World;
/// let mut world = World::new();
/// world.spawn((
/// Name::new("Root"),
/// Children::spawn((
/// Spawn(Name::new("Child1")),
/// SpawnIter(["Child2", "Child3"].into_iter().map(Name::new)),
/// )),
/// ));
/// ```
pub struct SpawnIter<I>(pub I);
impl<R: Relationship, I: Iterator<Item = B> + Send + Sync + 'static, B: Bundle> SpawnableList<R>
for SpawnIter<I>
{
fn spawn(self, world: &mut World, entity: Entity) {
for bundle in self.0 {
world.spawn((R::from(entity), bundle));
}
}
fn size_hint(&self) -> usize {
self.0.size_hint().0
}
}
/// A [`SpawnableList`] that spawns entities using a [`FnOnce`] with a [`RelatedSpawner`] as an argument:
///
/// ```
/// # use bevy_ecs::hierarchy::{Children, ChildOf};
/// # use bevy_ecs::spawn::{Spawn, SpawnWith, SpawnRelated};
/// # use bevy_ecs::name::Name;
/// # use bevy_ecs::relationship::RelatedSpawner;
/// # use bevy_ecs::world::World;
/// let mut world = World::new();
/// world.spawn((
/// Name::new("Root"),
/// Children::spawn((
/// Spawn(Name::new("Child1")),
/// SpawnWith(|parent: &mut RelatedSpawner<ChildOf>| {
/// parent.spawn(Name::new("Child2"));
/// parent.spawn(Name::new("Child3"));
/// }),
/// )),
/// ));
/// ```
pub struct SpawnWith<F>(pub F);
impl<R: Relationship, F: FnOnce(&mut RelatedSpawner<R>) + Send + Sync + 'static> SpawnableList<R>
for SpawnWith<F>
{
fn spawn(self, world: &mut World, entity: Entity) {
world.entity_mut(entity).with_related(self.0);
}
fn size_hint(&self) -> usize {
1
}
}
macro_rules! spawnable_list_impl {
($($list: ident),*) => {
#[expect(
clippy::allow_attributes,
reason = "This is a tuple-related macro; as such, the lints below may not always apply."
)]
impl<R: Relationship, $($list: SpawnableList<R>),*> SpawnableList<R> for ($($list,)*) {
fn spawn(self, _world: &mut World, _entity: Entity) {
#[allow(
non_snake_case,
reason = "The names of these variables are provided by the caller, not by us."
)]
let ($($list,)*) = self;
$($list.spawn(_world, _entity);)*
}
fn size_hint(&self) -> usize {
#[allow(
non_snake_case,
reason = "The names of these variables are provided by the caller, not by us."
)]
let ($($list,)*) = self;
0 $(+ $list.size_hint())*
}
}
}
}
all_tuples!(spawnable_list_impl, 0, 12, P);
/// A [`Bundle`] that:
/// 1. Contains a [`RelationshipTarget`] component (associated with the given [`Relationship`]). This reserves space for the [`SpawnableList`].
/// 2. Spawns a [`SpawnableList`] of related entities with a given [`Relationship`].
///
/// This is intended to be created using [`SpawnRelated`].
pub struct SpawnRelatedBundle<R: Relationship, L: SpawnableList<R>> {
list: L,
marker: PhantomData<R>,
}
impl<R: Relationship, L: SpawnableList<R>> BundleEffect for SpawnRelatedBundle<R, L> {
fn apply(self, entity: &mut EntityWorldMut) {
let id = entity.id();
entity.world_scope(|world: &mut World| {
self.list.spawn(world, id);
});
}
}
// SAFETY: This internally relies on the RelationshipTarget's Bundle implementation, which is sound.
unsafe impl<R: Relationship, L: SpawnableList<R> + Send + Sync + 'static> Bundle
for SpawnRelatedBundle<R, L>
{
fn component_ids(
components: &mut crate::component::ComponentsRegistrator,
ids: &mut impl FnMut(crate::component::ComponentId),
) {
<R::RelationshipTarget as Bundle>::component_ids(components, ids);
}
fn get_component_ids(
components: &crate::component::Components,
ids: &mut impl FnMut(Option<crate::component::ComponentId>),
) {
<R::RelationshipTarget as Bundle>::get_component_ids(components, ids);
}
fn register_required_components(
components: &mut crate::component::ComponentsRegistrator,
required_components: &mut crate::component::RequiredComponents,
) {
<R::RelationshipTarget as Bundle>::register_required_components(
components,
required_components,
);
}
}
impl<R: Relationship, L: SpawnableList<R>> DynamicBundle for SpawnRelatedBundle<R, L> {
type Effect = Self;
fn get_components(
self,
func: &mut impl FnMut(crate::component::StorageType, bevy_ptr::OwningPtr<'_>),
) -> Self::Effect {
<R::RelationshipTarget as RelationshipTarget>::with_capacity(self.list.size_hint())
.get_components(func);
self
}
}
/// A [`Bundle`] that:
/// 1. Contains a [`RelationshipTarget`] component (associated with the given [`Relationship`]). This reserves space for a single entity.
/// 2. Spawns a single related entity containing the given `B` [`Bundle`] and the given [`Relationship`].
///
/// This is intended to be created using [`SpawnRelated`].
pub struct SpawnOneRelated<R: Relationship, B: Bundle> {
bundle: B,
marker: PhantomData<R>,
}
impl<R: Relationship, B: Bundle> BundleEffect for SpawnOneRelated<R, B> {
fn apply(self, entity: &mut EntityWorldMut) {
entity.with_related::<R>(|s| {
s.spawn(self.bundle);
});
}
}
impl<R: Relationship, B: Bundle> DynamicBundle for SpawnOneRelated<R, B> {
type Effect = Self;
fn get_components(
self,
func: &mut impl FnMut(crate::component::StorageType, bevy_ptr::OwningPtr<'_>),
) -> Self::Effect {
<R::RelationshipTarget as RelationshipTarget>::with_capacity(1).get_components(func);
self
}
}
// SAFETY: This internally relies on the RelationshipTarget's Bundle implementation, which is sound.
unsafe impl<R: Relationship, B: Bundle> Bundle for SpawnOneRelated<R, B> {
fn component_ids(
components: &mut crate::component::ComponentsRegistrator,
ids: &mut impl FnMut(crate::component::ComponentId),
) {
<R::RelationshipTarget as Bundle>::component_ids(components, ids);
}
fn get_component_ids(
components: &crate::component::Components,
ids: &mut impl FnMut(Option<crate::component::ComponentId>),
) {
<R::RelationshipTarget as Bundle>::get_component_ids(components, ids);
}
fn register_required_components(
components: &mut crate::component::ComponentsRegistrator,
required_components: &mut crate::component::RequiredComponents,
) {
<R::RelationshipTarget as Bundle>::register_required_components(
components,
required_components,
);
}
}
/// [`RelationshipTarget`] methods that create a [`Bundle`] with a [`DynamicBundle::Effect`] that:
///
/// 1. Contains the [`RelationshipTarget`] component, pre-allocated with the necessary space for spawned entities.
/// 2. Spawns an entity (or a list of entities) that relate to the entity the [`Bundle`] is added to via the [`RelationshipTarget::Relationship`].
pub trait SpawnRelated: RelationshipTarget {
/// Returns a [`Bundle`] containing this [`RelationshipTarget`] component. It also spawns a [`SpawnableList`] of entities, each related to the bundle's entity
/// via [`RelationshipTarget::Relationship`]. The [`RelationshipTarget`] (when possible) will pre-allocate space for the related entities.
///
/// See [`Spawn`], [`SpawnIter`], and [`SpawnWith`] for usage examples.
fn spawn<L: SpawnableList<Self::Relationship>>(
list: L,
) -> SpawnRelatedBundle<Self::Relationship, L>;
/// Returns a [`Bundle`] containing this [`RelationshipTarget`] component. It also spawns a single entity containing [`Bundle`] that is related to the bundle's entity
/// via [`RelationshipTarget::Relationship`].
///
/// ```
/// # use bevy_ecs::hierarchy::Children;
/// # use bevy_ecs::spawn::SpawnRelated;
/// # use bevy_ecs::name::Name;
/// # use bevy_ecs::world::World;
/// let mut world = World::new();
/// world.spawn((
/// Name::new("Root"),
/// Children::spawn_one(Name::new("Child")),
/// ));
/// ```
fn spawn_one<B: Bundle>(bundle: B) -> SpawnOneRelated<Self::Relationship, B>;
}
impl<T: RelationshipTarget> SpawnRelated for T {
fn spawn<L: SpawnableList<Self::Relationship>>(
list: L,
) -> SpawnRelatedBundle<Self::Relationship, L> {
SpawnRelatedBundle {
list,
marker: PhantomData,
}
}
fn spawn_one<B: Bundle>(bundle: B) -> SpawnOneRelated<Self::Relationship, B> {
SpawnOneRelated {
bundle,
marker: PhantomData,
}
}
}
/// Returns a [`SpawnRelatedBundle`] that will insert the given [`RelationshipTarget`], spawn a [`SpawnableList`] of entities with given bundles that
/// relate to the [`RelationshipTarget`] entity via the [`RelationshipTarget::Relationship`] component, and reserve space in the [`RelationshipTarget`] for each spawned entity.
///
/// The first argument is the [`RelationshipTarget`] type. Any additional arguments will be interpreted as bundles to be spawned.
///
/// Also see [`children`](crate::children) for a [`Children`](crate::hierarchy::Children)-specific equivalent.
///
/// ```
/// # use bevy_ecs::hierarchy::Children;
/// # use bevy_ecs::name::Name;
/// # use bevy_ecs::world::World;
/// # use bevy_ecs::related;
/// # use bevy_ecs::spawn::{Spawn, SpawnRelated};
/// let mut world = World::new();
/// world.spawn((
/// Name::new("Root"),
/// related!(Children[
/// Name::new("Child1"),
/// (
/// Name::new("Child2"),
/// related!(Children[
/// Name::new("Grandchild"),
/// ])
/// )
/// ])
/// ));
/// ```
#[macro_export]
macro_rules! related {
($relationship_target:ty [$($child:expr),*$(,)?]) => {
<$relationship_target>::spawn(($($crate::spawn::Spawn($child)),*))
};
}