bevy/crates/bevy_render/src/render_phase/mod.rs
Joona Aalto 7b1c9f192e
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective

Fixes a part of #14274.

Bevy has an incredibly inconsistent naming convention for its system
sets, both internally and across the ecosystem.

<img alt="System sets in Bevy"
src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b"
width="450" />

*Names of public system set types in Bevy*

Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are
also a few `FooSystems` and `FooSet` types. In ecosystem crates on the
other hand, `FooSet` is perhaps the most commonly used name in general.
Conventions being so wildly inconsistent can make it harder for users to
pick names for their own types, to search for system sets on docs.rs, or
to even discern which types *are* system sets.

To reign in the inconsistency a bit and help unify the ecosystem, it
would be good to establish a common recommended naming convention for
system sets in Bevy itself, similar to how plugins are commonly suffixed
with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming
convention in first-party Bevy, we can softly nudge ecosystem crates to
follow suit (for types where it makes sense to do so).

Choosing a naming convention is also relevant now, as the [`bevy_cli`
recently adopted
lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce
naming for plugins and system sets, and the recommended naming used for
system sets is still a bit open.

## Which Name To Use?

Now the contentious part: what naming convention should we actually
adopt?

This was discussed on the Bevy Discord at the end of last year, starting
[here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>).
`FooSet` and `FooSystems` were the clear favorites, with `FooSet` very
narrowly winning an unofficial poll. However, it seems to me like the
consensus was broadly moving towards `FooSystems` at the end and after
the poll, with Cart
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708))
and later Alice
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533))
and also me being in favor of it.

Let's do a quick pros and cons list! Of course these are just what I
thought of, so take it with a grain of salt.

`FooSet`:

- Pro: Nice and short!
- Pro: Used by many ecosystem crates.
- Pro: The `Set` suffix comes directly from the trait name `SystemSet`.
- Pro: Pairs nicely with existing APIs like `in_set` and
`configure_sets`.
- Con: `Set` by itself doesn't actually indicate that it's related to
systems *at all*, apart from the implemented trait. A set of what?
- Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex:
`ContactSet`, `MeshSet`, `EnemySet`...

`FooSystems`:

- Pro: Very clearly indicates that the type represents a collection of
systems. The actual core concept, system(s), is in the name.
- Pro: Parallels nicely with `FooPlugins` for plugin groups.
- Pro: Low risk of conflicts with other names or misunderstandings about
what the type is.
- Pro: In most cases, reads *very* nicely and clearly. Ex:
`PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and
`AnimationSet`.
- Pro: Easy to search for on docs.rs.
- Con: Usually results in longer names.
- Con: Not yet as widely used.

Really the big problem with `FooSet` is that it doesn't actually
describe what it is. It describes what *kind of thing* it is (a set of
something), but not *what it is a set of*, unless you know the type or
check its docs or implemented traits. `FooSystems` on the other hand is
much more self-descriptive in this regard, at the cost of being a bit
longer to type.

Ultimately, in some ways it comes down to preference and how you think
of system sets. Personally, I was originally in favor of `FooSet`, but
have been increasingly on the side of `FooSystems`, especially after
seeing what the new names would actually look like in Avian and now
Bevy. I prefer it because it usually reads better, is much more clearly
related to groups of systems than `FooSet`, and overall *feels* more
correct and natural to me in the long term.

For these reasons, and because Alice and Cart also seemed to share a
preference for it when it was previously being discussed, I propose that
we adopt a `FooSystems` naming convention where applicable.

## Solution

Rename Bevy's system set types to use a consistent `FooSet` naming where
applicable.

- `AccessibilitySystem` → `AccessibilitySystems`
- `GizmoRenderSystem` → `GizmoRenderSystems`
- `PickSet` → `PickingSystems`
- `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems`
- `TransformSystem` → `TransformSystems`
- `RemoteSet` → `RemoteSystems`
- `RenderSet` → `RenderSystems`
- `SpriteSystem` → `SpriteSystems`
- `StateTransitionSteps` → `StateTransitionSystems`
- `RenderUiSystem` → `RenderUiSystems`
- `UiSystem` → `UiSystems`
- `Animation` → `AnimationSystems`
- `AssetEvents` → `AssetEventSystems`
- `TrackAssets` → `AssetTrackingSystems`
- `UpdateGizmoMeshes` → `GizmoMeshSystems`
- `InputSystem` → `InputSystems`
- `InputFocusSet` → `InputFocusSystems`
- `ExtractMaterialsSet` → `MaterialExtractionSystems`
- `ExtractMeshesSet` → `MeshExtractionSystems`
- `RumbleSystem` → `RumbleSystems`
- `CameraUpdateSystem` → `CameraUpdateSystems`
- `ExtractAssetsSet` → `AssetExtractionSystems`
- `Update2dText` → `Text2dUpdateSystems`
- `TimeSystem` → `TimeSystems`
- `AudioPlaySet` → `AudioPlaybackSystems`
- `SendEvents` → `EventSenderSystems`
- `EventUpdates` → `EventUpdateSystems`

A lot of the names got slightly longer, but they are also a lot more
consistent, and in my opinion the majority of them read much better. For
a few of the names I took the liberty of rewording things a bit;
definitely open to any further naming improvements.

There are still also cases where the `FooSystems` naming doesn't really
make sense, and those I left alone. This primarily includes system sets
like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`,
or `TransitionSchedules<S>`, where the type has some special purpose and
semantics.

## Todo

- [x] Should I keep all the old names as deprecated type aliases? I can
do this, but to avoid wasting work I'd prefer to first reach consensus
on whether these renames are even desired.
- [x] Migration guide
- [x] Release notes
2025-05-06 15:18:03 +00:00

1881 lines
72 KiB
Rust

//! The modular rendering abstraction responsible for queuing, preparing, sorting and drawing
//! entities as part of separate render phases.
//!
//! In Bevy each view (camera, or shadow-casting light, etc.) has one or multiple render phases
//! (e.g. opaque, transparent, shadow, etc).
//! They are used to queue entities for rendering.
//! Multiple phases might be required due to different sorting/batching behaviors
//! (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
//! the rendered texture of the previous phase (e.g. for screen-space reflections).
//!
//! To draw an entity, a corresponding [`PhaseItem`] has to be added to one or multiple of these
//! render phases for each view that it is visible in.
//! This must be done in the [`RenderSystems::Queue`].
//! After that the render phase sorts them in the [`RenderSystems::PhaseSort`].
//! Finally the items are rendered using a single [`TrackedRenderPass`], during
//! the [`RenderSystems::Render`].
//!
//! Therefore each phase item is assigned a [`Draw`] function.
//! These set up the state of the [`TrackedRenderPass`] (i.e. select the
//! [`RenderPipeline`](crate::render_resource::RenderPipeline), configure the
//! [`BindGroup`](crate::render_resource::BindGroup)s, etc.) and then issue a draw call,
//! for the corresponding item.
//!
//! The [`Draw`] function trait can either be implemented directly or such a function can be
//! created by composing multiple [`RenderCommand`]s.
mod draw;
mod draw_state;
mod rangefinder;
use bevy_app::{App, Plugin};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::component::Tick;
use bevy_ecs::entity::EntityHash;
use bevy_platform::collections::{hash_map::Entry, HashMap};
use bevy_utils::default;
pub use draw::*;
pub use draw_state::*;
use encase::{internal::WriteInto, ShaderSize};
use fixedbitset::{Block, FixedBitSet};
use indexmap::IndexMap;
use nonmax::NonMaxU32;
pub use rangefinder::*;
use wgpu::Features;
use crate::batching::gpu_preprocessing::{
GpuPreprocessingMode, GpuPreprocessingSupport, PhaseBatchedInstanceBuffers,
PhaseIndirectParametersBuffers,
};
use crate::renderer::RenderDevice;
use crate::sync_world::{MainEntity, MainEntityHashMap};
use crate::view::RetainedViewEntity;
use crate::RenderDebugFlags;
use crate::{
batching::{
self,
gpu_preprocessing::{self, BatchedInstanceBuffers},
no_gpu_preprocessing::{self, BatchedInstanceBuffer},
GetFullBatchData,
},
render_resource::{CachedRenderPipelineId, GpuArrayBufferIndex, PipelineCache},
Render, RenderApp, RenderSystems,
};
use bevy_ecs::{
prelude::*,
system::{lifetimeless::SRes, SystemParamItem},
};
use core::{fmt::Debug, hash::Hash, iter, marker::PhantomData, ops::Range, slice::SliceIndex};
use smallvec::SmallVec;
use tracing::warn;
/// Stores the rendering instructions for a single phase that uses bins in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewBinnedRenderPhases<BPI>(pub HashMap<RetainedViewEntity, BinnedRenderPhase<BPI>>)
where
BPI: BinnedPhaseItem;
/// A collection of all rendering instructions, that will be executed by the GPU, for a
/// single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used for phases in which the ordering is less
/// critical: for example, `Opaque3d`. It's generally faster than the
/// alternative [`SortedRenderPhase`].
pub struct BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
/// The multidrawable bins.
///
/// Each batch set key maps to a *batch set*, which in this case is a set of
/// meshes that can be drawn together in one multidraw call. Each batch set
/// is subdivided into *bins*, each of which represents a particular mesh.
/// Each bin contains the entity IDs of instances of that mesh.
///
/// So, for example, if there are two cubes and a sphere present in the
/// scene, we would generally have one batch set containing two bins,
/// assuming that the cubes and sphere meshes are allocated together and use
/// the same pipeline. The first bin, corresponding to the cubes, will have
/// two entities in it. The second bin, corresponding to the sphere, will
/// have one entity in it.
pub multidrawable_meshes: IndexMap<BPI::BatchSetKey, IndexMap<BPI::BinKey, RenderBin>>,
/// The bins corresponding to batchable items that aren't multidrawable.
///
/// For multidrawable entities, use `multidrawable_meshes`; for
/// unbatchable entities, use `unbatchable_values`.
pub batchable_meshes: IndexMap<(BPI::BatchSetKey, BPI::BinKey), RenderBin>,
/// The unbatchable bins.
///
/// Each entity here is rendered in a separate drawcall.
pub unbatchable_meshes: IndexMap<(BPI::BatchSetKey, BPI::BinKey), UnbatchableBinnedEntities>,
/// Items in the bin that aren't meshes at all.
///
/// Bevy itself doesn't place anything in this list, but plugins or your app
/// can in order to execute custom drawing commands. Draw functions for each
/// entity are simply called in order at rendering time.
///
/// See the `custom_phase_item` example for an example of how to use this.
pub non_mesh_items: IndexMap<(BPI::BatchSetKey, BPI::BinKey), NonMeshEntities>,
/// Information on each batch set.
///
/// A *batch set* is a set of entities that will be batched together unless
/// we're on a platform that doesn't support storage buffers (e.g. WebGL 2)
/// and differing dynamic uniform indices force us to break batches. On
/// platforms that support storage buffers, a batch set always consists of
/// at most one batch.
///
/// Multidrawable entities come first, then batchable entities, then
/// unbatchable entities.
pub(crate) batch_sets: BinnedRenderPhaseBatchSets<BPI::BinKey>,
/// The batch and bin key for each entity.
///
/// We retain these so that, when the entity changes,
/// [`Self::sweep_old_entities`] can quickly find the bin it was located in
/// and remove it.
cached_entity_bin_keys: IndexMap<MainEntity, CachedBinnedEntity<BPI>, EntityHash>,
/// The set of indices in [`Self::cached_entity_bin_keys`] that are
/// confirmed to be up to date.
///
/// Note that each bit in this bit set refers to an *index* in the
/// [`IndexMap`] (i.e. a bucket in the hash table). They aren't entity IDs.
valid_cached_entity_bin_keys: FixedBitSet,
/// The set of entities that changed bins this frame.
///
/// An entity will only be present in this list if it was in one bin on the
/// previous frame and is in a new bin on this frame. Each list entry
/// specifies the bin the entity used to be in. We use this in order to
/// remove the entity from the old bin during
/// [`BinnedRenderPhase::sweep_old_entities`].
entities_that_changed_bins: Vec<EntityThatChangedBins<BPI>>,
/// The gpu preprocessing mode configured for the view this phase is associated
/// with.
gpu_preprocessing_mode: GpuPreprocessingMode,
}
/// All entities that share a mesh and a material and can be batched as part of
/// a [`BinnedRenderPhase`].
#[derive(Default)]
pub struct RenderBin {
/// A list of the entities in each bin, along with their cached
/// [`InputUniformIndex`].
entities: IndexMap<MainEntity, InputUniformIndex, EntityHash>,
}
/// Information that we track about an entity that was in one bin on the
/// previous frame and is in a different bin this frame.
struct EntityThatChangedBins<BPI>
where
BPI: BinnedPhaseItem,
{
/// The entity.
main_entity: MainEntity,
/// The key that identifies the bin that this entity used to be in.
old_cached_binned_entity: CachedBinnedEntity<BPI>,
}
/// Information that we keep about an entity currently within a bin.
pub struct CachedBinnedEntity<BPI>
where
BPI: BinnedPhaseItem,
{
/// Information that we use to identify a cached entity in a bin.
pub cached_bin_key: Option<CachedBinKey<BPI>>,
/// The last modified tick of the entity.
///
/// We use this to detect when the entity needs to be invalidated.
pub change_tick: Tick,
}
/// Information that we use to identify a cached entity in a bin.
pub struct CachedBinKey<BPI>
where
BPI: BinnedPhaseItem,
{
/// The key of the batch set containing the entity.
pub batch_set_key: BPI::BatchSetKey,
/// The key of the bin containing the entity.
pub bin_key: BPI::BinKey,
/// The type of render phase that we use to render the entity: multidraw,
/// plain batch, etc.
pub phase_type: BinnedRenderPhaseType,
}
impl<BPI> Clone for CachedBinnedEntity<BPI>
where
BPI: BinnedPhaseItem,
{
fn clone(&self) -> Self {
CachedBinnedEntity {
cached_bin_key: self.cached_bin_key.clone(),
change_tick: self.change_tick,
}
}
}
impl<BPI> Clone for CachedBinKey<BPI>
where
BPI: BinnedPhaseItem,
{
fn clone(&self) -> Self {
CachedBinKey {
batch_set_key: self.batch_set_key.clone(),
bin_key: self.bin_key.clone(),
phase_type: self.phase_type,
}
}
}
impl<BPI> PartialEq for CachedBinKey<BPI>
where
BPI: BinnedPhaseItem,
{
fn eq(&self, other: &Self) -> bool {
self.batch_set_key == other.batch_set_key
&& self.bin_key == other.bin_key
&& self.phase_type == other.phase_type
}
}
/// How we store and render the batch sets.
///
/// Each one of these corresponds to a [`GpuPreprocessingMode`].
pub enum BinnedRenderPhaseBatchSets<BK> {
/// Batches are grouped into batch sets based on dynamic uniforms.
///
/// This corresponds to [`GpuPreprocessingMode::None`].
DynamicUniforms(Vec<SmallVec<[BinnedRenderPhaseBatch; 1]>>),
/// Batches are never grouped into batch sets.
///
/// This corresponds to [`GpuPreprocessingMode::PreprocessingOnly`].
Direct(Vec<BinnedRenderPhaseBatch>),
/// Batches are grouped together into batch sets based on their ability to
/// be multi-drawn together.
///
/// This corresponds to [`GpuPreprocessingMode::Culling`].
MultidrawIndirect(Vec<BinnedRenderPhaseBatchSet<BK>>),
}
/// A group of entities that will be batched together into a single multi-draw
/// call.
pub struct BinnedRenderPhaseBatchSet<BK> {
/// The first batch in this batch set.
pub(crate) first_batch: BinnedRenderPhaseBatch,
/// The key of the bin that the first batch corresponds to.
pub(crate) bin_key: BK,
/// The number of batches.
pub(crate) batch_count: u32,
/// The index of the batch set in the GPU buffer.
pub(crate) index: u32,
}
impl<BK> BinnedRenderPhaseBatchSets<BK> {
fn clear(&mut self) {
match *self {
BinnedRenderPhaseBatchSets::DynamicUniforms(ref mut vec) => vec.clear(),
BinnedRenderPhaseBatchSets::Direct(ref mut vec) => vec.clear(),
BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut vec) => vec.clear(),
}
}
}
/// Information about a single batch of entities rendered using binned phase
/// items.
#[derive(Debug)]
pub struct BinnedRenderPhaseBatch {
/// An entity that's *representative* of this batch.
///
/// Bevy uses this to fetch the mesh. It can be any entity in the batch.
pub representative_entity: (Entity, MainEntity),
/// The range of instance indices in this batch.
pub instance_range: Range<u32>,
/// The dynamic offset of the batch.
///
/// Note that dynamic offsets are only used on platforms that don't support
/// storage buffers.
pub extra_index: PhaseItemExtraIndex,
}
/// Information about the unbatchable entities in a bin.
pub struct UnbatchableBinnedEntities {
/// The entities.
pub entities: MainEntityHashMap<Entity>,
/// The GPU array buffer indices of each unbatchable binned entity.
pub(crate) buffer_indices: UnbatchableBinnedEntityIndexSet,
}
/// Information about [`BinnedRenderPhaseType::NonMesh`] entities.
pub struct NonMeshEntities {
/// The entities.
pub entities: MainEntityHashMap<Entity>,
}
/// Stores instance indices and dynamic offsets for unbatchable entities in a
/// binned render phase.
///
/// This is conceptually `Vec<UnbatchableBinnedEntityDynamicOffset>`, but it
/// avoids the overhead of storing dynamic offsets on platforms that support
/// them. In other words, this allows a fast path that avoids allocation on
/// platforms that aren't WebGL 2.
#[derive(Default)]
pub(crate) enum UnbatchableBinnedEntityIndexSet {
/// There are no unbatchable entities in this bin (yet).
#[default]
NoEntities,
/// The instances for all unbatchable entities in this bin are contiguous,
/// and there are no dynamic uniforms.
///
/// This is the typical case on platforms other than WebGL 2. We special
/// case this to avoid allocation on those platforms.
Sparse {
/// The range of indices.
instance_range: Range<u32>,
/// The index of the first indirect instance parameters.
///
/// The other indices immediately follow these.
first_indirect_parameters_index: Option<NonMaxU32>,
},
/// Dynamic uniforms are present for unbatchable entities in this bin.
///
/// We fall back to this on WebGL 2.
Dense(Vec<UnbatchableBinnedEntityIndices>),
}
/// The instance index and dynamic offset (if present) for an unbatchable entity.
///
/// This is only useful on platforms that don't support storage buffers.
#[derive(Clone)]
pub(crate) struct UnbatchableBinnedEntityIndices {
/// The instance index.
pub(crate) instance_index: u32,
/// The [`PhaseItemExtraIndex`], if present.
pub(crate) extra_index: PhaseItemExtraIndex,
}
/// Identifies the list within [`BinnedRenderPhase`] that a phase item is to be
/// placed in.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum BinnedRenderPhaseType {
/// The item is a mesh that's eligible for multi-draw indirect rendering and
/// can be batched with other meshes of the same type.
MultidrawableMesh,
/// The item is a mesh that can be batched with other meshes of the same type and
/// drawn in a single draw call.
BatchableMesh,
/// The item is a mesh that's eligible for indirect rendering, but can't be
/// batched with other meshes of the same type.
UnbatchableMesh,
/// The item isn't a mesh at all.
///
/// Bevy will simply invoke the drawing commands for such items one after
/// another, with no further processing.
///
/// The engine itself doesn't enqueue any items of this type, but it's
/// available for use in your application and/or plugins.
NonMesh,
}
impl<T> From<GpuArrayBufferIndex<T>> for UnbatchableBinnedEntityIndices
where
T: Clone + ShaderSize + WriteInto,
{
fn from(value: GpuArrayBufferIndex<T>) -> Self {
UnbatchableBinnedEntityIndices {
instance_index: value.index,
extra_index: PhaseItemExtraIndex::maybe_dynamic_offset(value.dynamic_offset),
}
}
}
impl<BPI> Default for ViewBinnedRenderPhases<BPI>
where
BPI: BinnedPhaseItem,
{
fn default() -> Self {
Self(default())
}
}
impl<BPI> ViewBinnedRenderPhases<BPI>
where
BPI: BinnedPhaseItem,
{
pub fn prepare_for_new_frame(
&mut self,
retained_view_entity: RetainedViewEntity,
gpu_preprocessing: GpuPreprocessingMode,
) {
match self.entry(retained_view_entity) {
Entry::Occupied(mut entry) => entry.get_mut().prepare_for_new_frame(),
Entry::Vacant(entry) => {
entry.insert(BinnedRenderPhase::<BPI>::new(gpu_preprocessing));
}
}
}
}
/// The index of the uniform describing this object in the GPU buffer, when GPU
/// preprocessing is enabled.
///
/// For example, for 3D meshes, this is the index of the `MeshInputUniform` in
/// the buffer.
///
/// This field is ignored if GPU preprocessing isn't in use, such as (currently)
/// in the case of 2D meshes. In that case, it can be safely set to
/// [`core::default::Default::default`].
#[derive(Clone, Copy, PartialEq, Default, Deref, DerefMut)]
#[repr(transparent)]
pub struct InputUniformIndex(pub u32);
impl<BPI> BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
/// Bins a new entity.
///
/// The `phase_type` parameter specifies whether the entity is a
/// preprocessable mesh and whether it can be binned with meshes of the same
/// type.
pub fn add(
&mut self,
batch_set_key: BPI::BatchSetKey,
bin_key: BPI::BinKey,
(entity, main_entity): (Entity, MainEntity),
input_uniform_index: InputUniformIndex,
mut phase_type: BinnedRenderPhaseType,
change_tick: Tick,
) {
// If the user has overridden indirect drawing for this view, we need to
// force the phase type to be batchable instead.
if self.gpu_preprocessing_mode == GpuPreprocessingMode::PreprocessingOnly
&& phase_type == BinnedRenderPhaseType::MultidrawableMesh
{
phase_type = BinnedRenderPhaseType::BatchableMesh;
}
match phase_type {
BinnedRenderPhaseType::MultidrawableMesh => {
match self.multidrawable_meshes.entry(batch_set_key.clone()) {
indexmap::map::Entry::Occupied(mut entry) => {
entry
.get_mut()
.entry(bin_key.clone())
.or_default()
.insert(main_entity, input_uniform_index);
}
indexmap::map::Entry::Vacant(entry) => {
let mut new_batch_set = IndexMap::default();
new_batch_set.insert(
bin_key.clone(),
RenderBin::from_entity(main_entity, input_uniform_index),
);
entry.insert(new_batch_set);
}
}
}
BinnedRenderPhaseType::BatchableMesh => {
match self
.batchable_meshes
.entry((batch_set_key.clone(), bin_key.clone()).clone())
{
indexmap::map::Entry::Occupied(mut entry) => {
entry.get_mut().insert(main_entity, input_uniform_index);
}
indexmap::map::Entry::Vacant(entry) => {
entry.insert(RenderBin::from_entity(main_entity, input_uniform_index));
}
}
}
BinnedRenderPhaseType::UnbatchableMesh => {
match self
.unbatchable_meshes
.entry((batch_set_key.clone(), bin_key.clone()))
{
indexmap::map::Entry::Occupied(mut entry) => {
entry.get_mut().entities.insert(main_entity, entity);
}
indexmap::map::Entry::Vacant(entry) => {
let mut entities = MainEntityHashMap::default();
entities.insert(main_entity, entity);
entry.insert(UnbatchableBinnedEntities {
entities,
buffer_indices: default(),
});
}
}
}
BinnedRenderPhaseType::NonMesh => {
// We don't process these items further.
match self
.non_mesh_items
.entry((batch_set_key.clone(), bin_key.clone()).clone())
{
indexmap::map::Entry::Occupied(mut entry) => {
entry.get_mut().entities.insert(main_entity, entity);
}
indexmap::map::Entry::Vacant(entry) => {
let mut entities = MainEntityHashMap::default();
entities.insert(main_entity, entity);
entry.insert(NonMeshEntities { entities });
}
}
}
}
// Update the cache.
self.update_cache(
main_entity,
Some(CachedBinKey {
batch_set_key,
bin_key,
phase_type,
}),
change_tick,
);
}
/// Inserts an entity into the cache with the given change tick.
pub fn update_cache(
&mut self,
main_entity: MainEntity,
cached_bin_key: Option<CachedBinKey<BPI>>,
change_tick: Tick,
) {
let new_cached_binned_entity = CachedBinnedEntity {
cached_bin_key,
change_tick,
};
let (index, old_cached_binned_entity) = self
.cached_entity_bin_keys
.insert_full(main_entity, new_cached_binned_entity.clone());
// If the entity changed bins, record its old bin so that we can remove
// the entity from it.
if let Some(old_cached_binned_entity) = old_cached_binned_entity {
if old_cached_binned_entity.cached_bin_key != new_cached_binned_entity.cached_bin_key {
self.entities_that_changed_bins.push(EntityThatChangedBins {
main_entity,
old_cached_binned_entity,
});
}
}
// Mark the entity as valid.
self.valid_cached_entity_bin_keys.grow_and_insert(index);
}
/// Encodes the GPU commands needed to render all entities in this phase.
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
{
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
draw_functions.prepare(world);
// Make sure to drop the reader-writer lock here to avoid recursive
// locks.
}
self.render_batchable_meshes(render_pass, world, view)?;
self.render_unbatchable_meshes(render_pass, world, view)?;
self.render_non_meshes(render_pass, world, view)?;
Ok(())
}
/// Renders all batchable meshes queued in this phase.
fn render_batchable_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
let render_device = world.resource::<RenderDevice>();
let multi_draw_indirect_count_supported = render_device
.features()
.contains(Features::MULTI_DRAW_INDIRECT_COUNT);
match self.batch_sets {
BinnedRenderPhaseBatchSets::DynamicUniforms(ref batch_sets) => {
debug_assert_eq!(self.batchable_meshes.len(), batch_sets.len());
for ((batch_set_key, bin_key), batch_set) in
self.batchable_meshes.keys().zip(batch_sets.iter())
{
for batch in batch_set {
let binned_phase_item = BPI::new(
batch_set_key.clone(),
bin_key.clone(),
batch.representative_entity,
batch.instance_range.clone(),
batch.extra_index.clone(),
);
// Fetch the draw function.
let Some(draw_function) =
draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
}
BinnedRenderPhaseBatchSets::Direct(ref batch_set) => {
for (batch, (batch_set_key, bin_key)) in
batch_set.iter().zip(self.batchable_meshes.keys())
{
let binned_phase_item = BPI::new(
batch_set_key.clone(),
bin_key.clone(),
batch.representative_entity,
batch.instance_range.clone(),
batch.extra_index.clone(),
);
// Fetch the draw function.
let Some(draw_function) =
draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
BinnedRenderPhaseBatchSets::MultidrawIndirect(ref batch_sets) => {
for (batch_set_key, batch_set) in self
.multidrawable_meshes
.keys()
.chain(
self.batchable_meshes
.keys()
.map(|(batch_set_key, _)| batch_set_key),
)
.zip(batch_sets.iter())
{
let batch = &batch_set.first_batch;
let batch_set_index = if multi_draw_indirect_count_supported {
NonMaxU32::new(batch_set.index)
} else {
None
};
let binned_phase_item = BPI::new(
batch_set_key.clone(),
batch_set.bin_key.clone(),
batch.representative_entity,
batch.instance_range.clone(),
match batch.extra_index {
PhaseItemExtraIndex::None => PhaseItemExtraIndex::None,
PhaseItemExtraIndex::DynamicOffset(ref dynamic_offset) => {
PhaseItemExtraIndex::DynamicOffset(*dynamic_offset)
}
PhaseItemExtraIndex::IndirectParametersIndex { ref range, .. } => {
PhaseItemExtraIndex::IndirectParametersIndex {
range: range.start..(range.start + batch_set.batch_count),
batch_set_index,
}
}
},
);
// Fetch the draw function.
let Some(draw_function) =
draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
}
Ok(())
}
/// Renders all unbatchable meshes queued in this phase.
fn render_unbatchable_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
for (batch_set_key, bin_key) in self.unbatchable_meshes.keys() {
let unbatchable_entities =
&self.unbatchable_meshes[&(batch_set_key.clone(), bin_key.clone())];
for (entity_index, entity) in unbatchable_entities.entities.iter().enumerate() {
let unbatchable_dynamic_offset = match &unbatchable_entities.buffer_indices {
UnbatchableBinnedEntityIndexSet::NoEntities => {
// Shouldn't happen…
continue;
}
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index,
} => UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index as u32,
extra_index: match first_indirect_parameters_index {
None => PhaseItemExtraIndex::None,
Some(first_indirect_parameters_index) => {
let first_indirect_parameters_index_for_entity =
u32::from(*first_indirect_parameters_index)
+ entity_index as u32;
PhaseItemExtraIndex::IndirectParametersIndex {
range: first_indirect_parameters_index_for_entity
..(first_indirect_parameters_index_for_entity + 1),
batch_set_index: None,
}
}
},
},
UnbatchableBinnedEntityIndexSet::Dense(dynamic_offsets) => {
dynamic_offsets[entity_index].clone()
}
};
let binned_phase_item = BPI::new(
batch_set_key.clone(),
bin_key.clone(),
(*entity.1, *entity.0),
unbatchable_dynamic_offset.instance_index
..(unbatchable_dynamic_offset.instance_index + 1),
unbatchable_dynamic_offset.extra_index,
);
// Fetch the draw function.
let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
Ok(())
}
/// Renders all objects of type [`BinnedRenderPhaseType::NonMesh`].
///
/// These will have been added by plugins or the application.
fn render_non_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
for ((batch_set_key, bin_key), non_mesh_entities) in &self.non_mesh_items {
for (main_entity, entity) in non_mesh_entities.entities.iter() {
// Come up with a fake batch range and extra index. The draw
// function is expected to manage any sort of batching logic itself.
let binned_phase_item = BPI::new(
batch_set_key.clone(),
bin_key.clone(),
(*entity, *main_entity),
0..1,
PhaseItemExtraIndex::None,
);
let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
Ok(())
}
pub fn is_empty(&self) -> bool {
self.multidrawable_meshes.is_empty()
&& self.batchable_meshes.is_empty()
&& self.unbatchable_meshes.is_empty()
&& self.non_mesh_items.is_empty()
}
pub fn prepare_for_new_frame(&mut self) {
self.batch_sets.clear();
self.valid_cached_entity_bin_keys.clear();
self.valid_cached_entity_bin_keys
.grow(self.cached_entity_bin_keys.len());
self.valid_cached_entity_bin_keys
.set_range(self.cached_entity_bin_keys.len().., true);
self.entities_that_changed_bins.clear();
for unbatchable_bin in self.unbatchable_meshes.values_mut() {
unbatchable_bin.buffer_indices.clear();
}
}
/// Checks to see whether the entity is in a bin and returns true if it's
/// both in a bin and up to date.
///
/// If this function returns true, we also add the entry to the
/// `valid_cached_entity_bin_keys` list.
pub fn validate_cached_entity(
&mut self,
visible_entity: MainEntity,
current_change_tick: Tick,
) -> bool {
if let indexmap::map::Entry::Occupied(entry) =
self.cached_entity_bin_keys.entry(visible_entity)
{
if entry.get().change_tick == current_change_tick {
self.valid_cached_entity_bin_keys.insert(entry.index());
return true;
}
}
false
}
/// Removes all entities not marked as clean from the bins.
///
/// During `queue_material_meshes`, we process all visible entities and mark
/// each as clean as we come to it. Then, in [`sweep_old_entities`], we call
/// this method, which removes entities that aren't marked as clean from the
/// bins.
pub fn sweep_old_entities(&mut self) {
// Search for entities not marked as valid. We have to do this in
// reverse order because `swap_remove_index` will potentially invalidate
// all indices after the one we remove.
for index in ReverseFixedBitSetZeroesIterator::new(&self.valid_cached_entity_bin_keys) {
let Some((entity, cached_binned_entity)) =
self.cached_entity_bin_keys.swap_remove_index(index)
else {
continue;
};
if let Some(ref cached_bin_key) = cached_binned_entity.cached_bin_key {
remove_entity_from_bin(
entity,
cached_bin_key,
&mut self.multidrawable_meshes,
&mut self.batchable_meshes,
&mut self.unbatchable_meshes,
&mut self.non_mesh_items,
);
}
}
// If an entity changed bins, we need to remove it from its old bin.
for entity_that_changed_bins in self.entities_that_changed_bins.drain(..) {
let Some(ref old_cached_bin_key) = entity_that_changed_bins
.old_cached_binned_entity
.cached_bin_key
else {
continue;
};
remove_entity_from_bin(
entity_that_changed_bins.main_entity,
old_cached_bin_key,
&mut self.multidrawable_meshes,
&mut self.batchable_meshes,
&mut self.unbatchable_meshes,
&mut self.non_mesh_items,
);
}
}
}
/// Removes an entity from a bin.
///
/// If this makes the bin empty, this function removes the bin as well.
///
/// This is a standalone function instead of a method on [`BinnedRenderPhase`]
/// for borrow check reasons.
fn remove_entity_from_bin<BPI>(
entity: MainEntity,
entity_bin_key: &CachedBinKey<BPI>,
multidrawable_meshes: &mut IndexMap<BPI::BatchSetKey, IndexMap<BPI::BinKey, RenderBin>>,
batchable_meshes: &mut IndexMap<(BPI::BatchSetKey, BPI::BinKey), RenderBin>,
unbatchable_meshes: &mut IndexMap<(BPI::BatchSetKey, BPI::BinKey), UnbatchableBinnedEntities>,
non_mesh_items: &mut IndexMap<(BPI::BatchSetKey, BPI::BinKey), NonMeshEntities>,
) where
BPI: BinnedPhaseItem,
{
match entity_bin_key.phase_type {
BinnedRenderPhaseType::MultidrawableMesh => {
if let indexmap::map::Entry::Occupied(mut batch_set_entry) =
multidrawable_meshes.entry(entity_bin_key.batch_set_key.clone())
{
if let indexmap::map::Entry::Occupied(mut bin_entry) = batch_set_entry
.get_mut()
.entry(entity_bin_key.bin_key.clone())
{
bin_entry.get_mut().remove(entity);
// If the bin is now empty, remove the bin.
if bin_entry.get_mut().is_empty() {
bin_entry.swap_remove();
}
}
// If the batch set is now empty, remove it. This will perturb
// the order, but that's OK because we're going to sort the bin
// afterwards.
if batch_set_entry.get_mut().is_empty() {
batch_set_entry.swap_remove();
}
}
}
BinnedRenderPhaseType::BatchableMesh => {
if let indexmap::map::Entry::Occupied(mut bin_entry) = batchable_meshes.entry((
entity_bin_key.batch_set_key.clone(),
entity_bin_key.bin_key.clone(),
)) {
bin_entry.get_mut().remove(entity);
// If the bin is now empty, remove the bin.
if bin_entry.get_mut().is_empty() {
bin_entry.swap_remove();
}
}
}
BinnedRenderPhaseType::UnbatchableMesh => {
if let indexmap::map::Entry::Occupied(mut bin_entry) = unbatchable_meshes.entry((
entity_bin_key.batch_set_key.clone(),
entity_bin_key.bin_key.clone(),
)) {
bin_entry.get_mut().entities.remove(&entity);
// If the bin is now empty, remove the bin.
if bin_entry.get_mut().entities.is_empty() {
bin_entry.swap_remove();
}
}
}
BinnedRenderPhaseType::NonMesh => {
if let indexmap::map::Entry::Occupied(mut bin_entry) = non_mesh_items.entry((
entity_bin_key.batch_set_key.clone(),
entity_bin_key.bin_key.clone(),
)) {
bin_entry.get_mut().entities.remove(&entity);
// If the bin is now empty, remove the bin.
if bin_entry.get_mut().entities.is_empty() {
bin_entry.swap_remove();
}
}
}
}
}
impl<BPI> BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
fn new(gpu_preprocessing: GpuPreprocessingMode) -> Self {
Self {
multidrawable_meshes: IndexMap::default(),
batchable_meshes: IndexMap::default(),
unbatchable_meshes: IndexMap::default(),
non_mesh_items: IndexMap::default(),
batch_sets: match gpu_preprocessing {
GpuPreprocessingMode::Culling => {
BinnedRenderPhaseBatchSets::MultidrawIndirect(vec![])
}
GpuPreprocessingMode::PreprocessingOnly => {
BinnedRenderPhaseBatchSets::Direct(vec![])
}
GpuPreprocessingMode::None => BinnedRenderPhaseBatchSets::DynamicUniforms(vec![]),
},
cached_entity_bin_keys: IndexMap::default(),
valid_cached_entity_bin_keys: FixedBitSet::new(),
entities_that_changed_bins: vec![],
gpu_preprocessing_mode: gpu_preprocessing,
}
}
}
impl UnbatchableBinnedEntityIndexSet {
/// Returns the [`UnbatchableBinnedEntityIndices`] for the given entity.
fn indices_for_entity_index(
&self,
entity_index: u32,
) -> Option<UnbatchableBinnedEntityIndices> {
match self {
UnbatchableBinnedEntityIndexSet::NoEntities => None,
UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. }
if entity_index >= instance_range.len() as u32 =>
{
None
}
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index: None,
} => Some(UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index,
extra_index: PhaseItemExtraIndex::None,
}),
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index: Some(first_indirect_parameters_index),
} => {
let first_indirect_parameters_index_for_this_batch =
u32::from(*first_indirect_parameters_index) + entity_index;
Some(UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index,
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
range: first_indirect_parameters_index_for_this_batch
..(first_indirect_parameters_index_for_this_batch + 1),
batch_set_index: None,
},
})
}
UnbatchableBinnedEntityIndexSet::Dense(indices) => {
indices.get(entity_index as usize).cloned()
}
}
}
}
/// A convenient abstraction for adding all the systems necessary for a binned
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct BinnedRenderPhasePlugin<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
/// Debugging flags that can optionally be set when constructing the renderer.
pub debug_flags: RenderDebugFlags,
phantom: PhantomData<(BPI, GFBD)>,
}
impl<BPI, GFBD> BinnedRenderPhasePlugin<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
pub fn new(debug_flags: RenderDebugFlags) -> Self {
Self {
debug_flags,
phantom: PhantomData,
}
}
}
impl<BPI, GFBD> Plugin for BinnedRenderPhasePlugin<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData + Sync + Send + 'static,
{
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<ViewBinnedRenderPhases<BPI>>()
.init_resource::<PhaseBatchedInstanceBuffers<BPI, GFBD::BufferData>>()
.insert_resource(PhaseIndirectParametersBuffers::<BPI>::new(
self.debug_flags
.contains(RenderDebugFlags::ALLOW_COPIES_FROM_INDIRECT_PARAMETERS),
))
.add_systems(
Render,
(
batching::sort_binned_render_phase::<BPI>.in_set(RenderSystems::PhaseSort),
(
no_gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
.run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
),
)
.in_set(RenderSystems::PrepareResources),
sweep_old_entities::<BPI>.in_set(RenderSystems::QueueSweep),
gpu_preprocessing::collect_buffers_for_phase::<BPI, GFBD>
.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
)
.in_set(RenderSystems::PrepareResourcesCollectPhaseBuffers),
),
);
}
}
/// Stores the rendering instructions for a single phase that sorts items in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewSortedRenderPhases<SPI>(pub HashMap<RetainedViewEntity, SortedRenderPhase<SPI>>)
where
SPI: SortedPhaseItem;
impl<SPI> Default for ViewSortedRenderPhases<SPI>
where
SPI: SortedPhaseItem,
{
fn default() -> Self {
Self(default())
}
}
impl<SPI> ViewSortedRenderPhases<SPI>
where
SPI: SortedPhaseItem,
{
pub fn insert_or_clear(&mut self, retained_view_entity: RetainedViewEntity) {
match self.entry(retained_view_entity) {
Entry::Occupied(mut entry) => entry.get_mut().clear(),
Entry::Vacant(entry) => {
entry.insert(default());
}
}
}
}
/// A convenient abstraction for adding all the systems necessary for a sorted
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct SortedRenderPhasePlugin<SPI, GFBD>
where
SPI: SortedPhaseItem,
GFBD: GetFullBatchData,
{
/// Debugging flags that can optionally be set when constructing the renderer.
pub debug_flags: RenderDebugFlags,
phantom: PhantomData<(SPI, GFBD)>,
}
impl<SPI, GFBD> SortedRenderPhasePlugin<SPI, GFBD>
where
SPI: SortedPhaseItem,
GFBD: GetFullBatchData,
{
pub fn new(debug_flags: RenderDebugFlags) -> Self {
Self {
debug_flags,
phantom: PhantomData,
}
}
}
impl<SPI, GFBD> Plugin for SortedRenderPhasePlugin<SPI, GFBD>
where
SPI: SortedPhaseItem + CachedRenderPipelinePhaseItem,
GFBD: GetFullBatchData + Sync + Send + 'static,
{
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<ViewSortedRenderPhases<SPI>>()
.init_resource::<PhaseBatchedInstanceBuffers<SPI, GFBD::BufferData>>()
.insert_resource(PhaseIndirectParametersBuffers::<SPI>::new(
self.debug_flags
.contains(RenderDebugFlags::ALLOW_COPIES_FROM_INDIRECT_PARAMETERS),
))
.add_systems(
Render,
(
(
no_gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>
.run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>
.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
),
)
.in_set(RenderSystems::PrepareResources),
gpu_preprocessing::collect_buffers_for_phase::<SPI, GFBD>
.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
)
.in_set(RenderSystems::PrepareResourcesCollectPhaseBuffers),
),
);
}
}
impl UnbatchableBinnedEntityIndexSet {
/// Adds a new entity to the list of unbatchable binned entities.
pub fn add(&mut self, indices: UnbatchableBinnedEntityIndices) {
match self {
UnbatchableBinnedEntityIndexSet::NoEntities => {
match indices.extra_index {
PhaseItemExtraIndex::DynamicOffset(_) => {
// This is the first entity we've seen, and we don't have
// compute shaders. Initialize an array.
*self = UnbatchableBinnedEntityIndexSet::Dense(vec![indices]);
}
PhaseItemExtraIndex::None => {
// This is the first entity we've seen, and we have compute
// shaders. Initialize the fast path.
*self = UnbatchableBinnedEntityIndexSet::Sparse {
instance_range: indices.instance_index..indices.instance_index + 1,
first_indirect_parameters_index: None,
}
}
PhaseItemExtraIndex::IndirectParametersIndex {
range: ref indirect_parameters_index,
..
} => {
// This is the first entity we've seen, and we have compute
// shaders. Initialize the fast path.
*self = UnbatchableBinnedEntityIndexSet::Sparse {
instance_range: indices.instance_index..indices.instance_index + 1,
first_indirect_parameters_index: NonMaxU32::new(
indirect_parameters_index.start,
),
}
}
}
}
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index,
} if instance_range.end == indices.instance_index
&& ((first_indirect_parameters_index.is_none()
&& indices.extra_index == PhaseItemExtraIndex::None)
|| first_indirect_parameters_index.is_some_and(
|first_indirect_parameters_index| match indices.extra_index {
PhaseItemExtraIndex::IndirectParametersIndex {
range: ref this_range,
..
} => {
u32::from(first_indirect_parameters_index) + instance_range.end
- instance_range.start
== this_range.start
}
PhaseItemExtraIndex::DynamicOffset(_) | PhaseItemExtraIndex::None => {
false
}
},
)) =>
{
// This is the normal case on non-WebGL 2.
instance_range.end += 1;
}
UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. } => {
// We thought we were in non-WebGL 2 mode, but we got a dynamic
// offset or non-contiguous index anyway. This shouldn't happen,
// but let's go ahead and do the sensible thing anyhow: demote
// the compressed `NoDynamicOffsets` field to the full
// `DynamicOffsets` array.
warn!(
"Unbatchable binned entity index set was demoted from sparse to dense. \
This is a bug in the renderer. Please report it.",
);
let new_dynamic_offsets = (0..instance_range.len() as u32)
.flat_map(|entity_index| self.indices_for_entity_index(entity_index))
.chain(iter::once(indices))
.collect();
*self = UnbatchableBinnedEntityIndexSet::Dense(new_dynamic_offsets);
}
UnbatchableBinnedEntityIndexSet::Dense(dense_indices) => {
dense_indices.push(indices);
}
}
}
/// Clears the unbatchable binned entity index set.
fn clear(&mut self) {
match self {
UnbatchableBinnedEntityIndexSet::Dense(dense_indices) => dense_indices.clear(),
UnbatchableBinnedEntityIndexSet::Sparse { .. } => {
*self = UnbatchableBinnedEntityIndexSet::NoEntities;
}
_ => {}
}
}
}
/// A collection of all items to be rendered that will be encoded to GPU
/// commands for a single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used only for meshes that need to be sorted
/// back-to-front, such as transparent meshes. For items that don't need strict
/// sorting, [`BinnedRenderPhase`] is preferred, for performance.
pub struct SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
/// The items within this [`SortedRenderPhase`].
pub items: Vec<I>,
}
impl<I> Default for SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
fn default() -> Self {
Self { items: Vec::new() }
}
}
impl<I> SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
/// Adds a [`PhaseItem`] to this render phase.
#[inline]
pub fn add(&mut self, item: I) {
self.items.push(item);
}
/// Removes all [`PhaseItem`]s from this render phase.
#[inline]
pub fn clear(&mut self) {
self.items.clear();
}
/// Sorts all of its [`PhaseItem`]s.
pub fn sort(&mut self) {
I::sort(&mut self.items);
}
/// An [`Iterator`] through the associated [`Entity`] for each [`PhaseItem`] in order.
#[inline]
pub fn iter_entities(&'_ self) -> impl Iterator<Item = Entity> + '_ {
self.items.iter().map(PhaseItem::entity)
}
/// Renders all of its [`PhaseItem`]s using their corresponding draw functions.
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
self.render_range(render_pass, world, view, ..)
}
/// Renders all [`PhaseItem`]s in the provided `range` (based on their index in `self.items`) using their corresponding draw functions.
pub fn render_range<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
range: impl SliceIndex<[I], Output = [I]>,
) -> Result<(), DrawError> {
let items = self
.items
.get(range)
.expect("`Range` provided to `render_range()` is out of bounds");
let draw_functions = world.resource::<DrawFunctions<I>>();
let mut draw_functions = draw_functions.write();
draw_functions.prepare(world);
let mut index = 0;
while index < items.len() {
let item = &items[index];
let batch_range = item.batch_range();
if batch_range.is_empty() {
index += 1;
} else {
let draw_function = draw_functions.get_mut(item.draw_function()).unwrap();
draw_function.draw(world, render_pass, view, item)?;
index += batch_range.len();
}
}
Ok(())
}
}
/// An item (entity of the render world) which will be drawn to a texture or the screen,
/// as part of a render phase.
///
/// The data required for rendering an entity is extracted from the main world in the
/// [`ExtractSchedule`](crate::ExtractSchedule).
/// Then it has to be queued up for rendering during the [`RenderSystems::Queue`],
/// by adding a corresponding phase item to a render phase.
/// Afterwards it will be possibly sorted and rendered automatically in the
/// [`RenderSystems::PhaseSort`] and [`RenderSystems::Render`], respectively.
///
/// `PhaseItem`s come in two flavors: [`BinnedPhaseItem`]s and
/// [`SortedPhaseItem`]s.
///
/// * Binned phase items have a `BinKey` which specifies what bin they're to be
/// placed in. All items in the same bin are eligible to be batched together.
/// The `BinKey`s are sorted, but the individual bin items aren't. Binned phase
/// items are good for opaque meshes, in which the order of rendering isn't
/// important. Generally, binned phase items are faster than sorted phase items.
///
/// * Sorted phase items, on the other hand, are placed into one large buffer
/// and then sorted all at once. This is needed for transparent meshes, which
/// have to be sorted back-to-front to render with the painter's algorithm.
/// These types of phase items are generally slower than binned phase items.
pub trait PhaseItem: Sized + Send + Sync + 'static {
/// Whether or not this `PhaseItem` should be subjected to automatic batching. (Default: `true`)
const AUTOMATIC_BATCHING: bool = true;
/// The corresponding entity that will be drawn.
///
/// This is used to fetch the render data of the entity, required by the draw function,
/// from the render world .
fn entity(&self) -> Entity;
/// The main world entity represented by this `PhaseItem`.
fn main_entity(&self) -> MainEntity;
/// Specifies the [`Draw`] function used to render the item.
fn draw_function(&self) -> DrawFunctionId;
/// The range of instances that the batch covers. After doing a batched draw, batch range
/// length phase items will be skipped. This design is to avoid having to restructure the
/// render phase unnecessarily.
fn batch_range(&self) -> &Range<u32>;
fn batch_range_mut(&mut self) -> &mut Range<u32>;
/// Returns the [`PhaseItemExtraIndex`].
///
/// If present, this is either a dynamic offset or an indirect parameters
/// index.
fn extra_index(&self) -> PhaseItemExtraIndex;
/// Returns a pair of mutable references to both the batch range and extra
/// index.
fn batch_range_and_extra_index_mut(&mut self) -> (&mut Range<u32>, &mut PhaseItemExtraIndex);
}
/// The "extra index" associated with some [`PhaseItem`]s, alongside the
/// indirect instance index.
///
/// Sometimes phase items require another index in addition to the range of
/// instances they already have. These can be:
///
/// * The *dynamic offset*: a `wgpu` dynamic offset into the uniform buffer of
/// instance data. This is used on platforms that don't support storage
/// buffers, to work around uniform buffer size limitations.
///
/// * The *indirect parameters index*: an index into the buffer that specifies
/// the indirect parameters for this [`PhaseItem`]'s drawcall. This is used when
/// indirect mode is on (as used for GPU culling).
///
/// Note that our indirect draw functionality requires storage buffers, so it's
/// impossible to have both a dynamic offset and an indirect parameters index.
/// This convenient fact allows us to pack both indices into a single `u32`.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum PhaseItemExtraIndex {
/// No extra index is present.
None,
/// A `wgpu` dynamic offset into the uniform buffer of instance data. This
/// is used on platforms that don't support storage buffers, to work around
/// uniform buffer size limitations.
DynamicOffset(u32),
/// An index into the buffer that specifies the indirect parameters for this
/// [`PhaseItem`]'s drawcall. This is used when indirect mode is on (as used
/// for GPU culling).
IndirectParametersIndex {
/// The range of indirect parameters within the indirect parameters array.
///
/// If we're using `multi_draw_indirect_count`, this specifies the
/// maximum range of indirect parameters within that array. If batches
/// are ultimately culled out on the GPU, the actual number of draw
/// commands might be lower than the length of this range.
range: Range<u32>,
/// If `multi_draw_indirect_count` is in use, and this phase item is
/// part of a batch set, specifies the index of the batch set that this
/// phase item is a part of.
///
/// If `multi_draw_indirect_count` isn't in use, or this phase item
/// isn't part of a batch set, this is `None`.
batch_set_index: Option<NonMaxU32>,
},
}
impl PhaseItemExtraIndex {
/// Returns either an indirect parameters index or
/// [`PhaseItemExtraIndex::None`], as appropriate.
pub fn maybe_indirect_parameters_index(
indirect_parameters_index: Option<NonMaxU32>,
) -> PhaseItemExtraIndex {
match indirect_parameters_index {
Some(indirect_parameters_index) => PhaseItemExtraIndex::IndirectParametersIndex {
range: u32::from(indirect_parameters_index)
..(u32::from(indirect_parameters_index) + 1),
batch_set_index: None,
},
None => PhaseItemExtraIndex::None,
}
}
/// Returns either a dynamic offset index or [`PhaseItemExtraIndex::None`],
/// as appropriate.
pub fn maybe_dynamic_offset(dynamic_offset: Option<NonMaxU32>) -> PhaseItemExtraIndex {
match dynamic_offset {
Some(dynamic_offset) => PhaseItemExtraIndex::DynamicOffset(dynamic_offset.into()),
None => PhaseItemExtraIndex::None,
}
}
}
/// Represents phase items that are placed into bins. The `BinKey` specifies
/// which bin they're to be placed in. Bin keys are sorted, and items within the
/// same bin are eligible to be batched together. The elements within the bins
/// aren't themselves sorted.
///
/// An example of a binned phase item is `Opaque3d`, for which the rendering
/// order isn't critical.
pub trait BinnedPhaseItem: PhaseItem {
/// The key used for binning [`PhaseItem`]s into bins. Order the members of
/// [`BinnedPhaseItem::BinKey`] by the order of binding for best
/// performance. For example, pipeline id, draw function id, mesh asset id,
/// lowest variable bind group id such as the material bind group id, and
/// its dynamic offsets if any, next bind group and offsets, etc. This
/// reduces the need for rebinding between bins and improves performance.
type BinKey: Clone + Send + Sync + PartialEq + Eq + Ord + Hash;
/// The key used to combine batches into batch sets.
///
/// A *batch set* is a set of meshes that can potentially be multi-drawn
/// together.
type BatchSetKey: PhaseItemBatchSetKey;
/// Creates a new binned phase item from the key and per-entity data.
///
/// Unlike [`SortedPhaseItem`]s, this is generally called "just in time"
/// before rendering. The resulting phase item isn't stored in any data
/// structures, resulting in significant memory savings.
fn new(
batch_set_key: Self::BatchSetKey,
bin_key: Self::BinKey,
representative_entity: (Entity, MainEntity),
batch_range: Range<u32>,
extra_index: PhaseItemExtraIndex,
) -> Self;
}
/// A key used to combine batches into batch sets.
///
/// A *batch set* is a set of meshes that can potentially be multi-drawn
/// together.
pub trait PhaseItemBatchSetKey: Clone + Send + Sync + PartialEq + Eq + Ord + Hash {
/// Returns true if this batch set key describes indexed meshes or false if
/// it describes non-indexed meshes.
///
/// Bevy uses this in order to determine which kind of indirect draw
/// parameters to use, if indirect drawing is enabled.
fn indexed(&self) -> bool;
}
/// Represents phase items that must be sorted. The `SortKey` specifies the
/// order that these items are drawn in. These are placed into a single array,
/// and the array as a whole is then sorted.
///
/// An example of a sorted phase item is `Transparent3d`, which must be sorted
/// back to front in order to correctly render with the painter's algorithm.
pub trait SortedPhaseItem: PhaseItem {
/// The type used for ordering the items. The smallest values are drawn first.
/// This order can be calculated using the [`ViewRangefinder3d`],
/// based on the view-space `Z` value of the corresponding view matrix.
type SortKey: Ord;
/// Determines the order in which the items are drawn.
fn sort_key(&self) -> Self::SortKey;
/// Sorts a slice of phase items into render order. Generally if the same type
/// is batched this should use a stable sort like [`slice::sort_by_key`].
/// In almost all other cases, this should not be altered from the default,
/// which uses an unstable sort, as this provides the best balance of CPU and GPU
/// performance.
///
/// Implementers can optionally not sort the list at all. This is generally advisable if and
/// only if the renderer supports a depth prepass, which is by default not supported by
/// the rest of Bevy's first party rendering crates. Even then, this may have a negative
/// impact on GPU-side performance due to overdraw.
///
/// It's advised to always profile for performance changes when changing this implementation.
#[inline]
fn sort(items: &mut [Self]) {
items.sort_unstable_by_key(Self::sort_key);
}
/// Whether this phase item targets indexed meshes (those with both vertex
/// and index buffers as opposed to just vertex buffers).
///
/// Bevy needs this information in order to properly group phase items
/// together for multi-draw indirect, because the GPU layout of indirect
/// commands differs between indexed and non-indexed meshes.
///
/// If you're implementing a custom phase item that doesn't describe a mesh,
/// you can safely return false here.
fn indexed(&self) -> bool;
}
/// A [`PhaseItem`] item, that automatically sets the appropriate render pipeline,
/// cached in the [`PipelineCache`].
///
/// You can use the [`SetItemPipeline`] render command to set the pipeline for this item.
pub trait CachedRenderPipelinePhaseItem: PhaseItem {
/// The id of the render pipeline, cached in the [`PipelineCache`], that will be used to draw
/// this phase item.
fn cached_pipeline(&self) -> CachedRenderPipelineId;
}
/// A [`RenderCommand`] that sets the pipeline for the [`CachedRenderPipelinePhaseItem`].
pub struct SetItemPipeline;
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
type Param = SRes<PipelineCache>;
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_entity: Option<()>,
pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
if let Some(pipeline) = pipeline_cache
.into_inner()
.get_render_pipeline(item.cached_pipeline())
{
pass.set_render_pipeline(pipeline);
RenderCommandResult::Success
} else {
RenderCommandResult::Skip
}
}
}
/// This system sorts the [`PhaseItem`]s of all [`SortedRenderPhase`]s of this
/// type.
pub fn sort_phase_system<I>(mut render_phases: ResMut<ViewSortedRenderPhases<I>>)
where
I: SortedPhaseItem,
{
for phase in render_phases.values_mut() {
phase.sort();
}
}
/// Removes entities that became invisible or changed phases from the bins.
///
/// This must run after queuing.
pub fn sweep_old_entities<BPI>(mut render_phases: ResMut<ViewBinnedRenderPhases<BPI>>)
where
BPI: BinnedPhaseItem,
{
for phase in render_phases.0.values_mut() {
phase.sweep_old_entities();
}
}
impl BinnedRenderPhaseType {
pub fn mesh(
batchable: bool,
gpu_preprocessing_support: &GpuPreprocessingSupport,
) -> BinnedRenderPhaseType {
match (batchable, gpu_preprocessing_support.max_supported_mode) {
(true, GpuPreprocessingMode::Culling) => BinnedRenderPhaseType::MultidrawableMesh,
(true, _) => BinnedRenderPhaseType::BatchableMesh,
(false, _) => BinnedRenderPhaseType::UnbatchableMesh,
}
}
}
impl RenderBin {
/// Creates a [`RenderBin`] containing a single entity.
fn from_entity(entity: MainEntity, uniform_index: InputUniformIndex) -> RenderBin {
let mut entities = IndexMap::default();
entities.insert(entity, uniform_index);
RenderBin { entities }
}
/// Inserts an entity into the bin.
fn insert(&mut self, entity: MainEntity, uniform_index: InputUniformIndex) {
self.entities.insert(entity, uniform_index);
}
/// Removes an entity from the bin.
fn remove(&mut self, entity_to_remove: MainEntity) {
self.entities.swap_remove(&entity_to_remove);
}
/// Returns true if the bin contains no entities.
fn is_empty(&self) -> bool {
self.entities.is_empty()
}
/// Returns the [`IndexMap`] containing all the entities in the bin, along
/// with the cached [`InputUniformIndex`] of each.
#[inline]
pub fn entities(&self) -> &IndexMap<MainEntity, InputUniformIndex, EntityHash> {
&self.entities
}
}
/// An iterator that efficiently finds the indices of all zero bits in a
/// [`FixedBitSet`] and returns them in reverse order.
///
/// [`FixedBitSet`] doesn't natively offer this functionality, so we have to
/// implement it ourselves.
#[derive(Debug)]
struct ReverseFixedBitSetZeroesIterator<'a> {
/// The bit set.
bitset: &'a FixedBitSet,
/// The next bit index we're going to scan when [`Iterator::next`] is
/// called.
bit_index: isize,
}
impl<'a> ReverseFixedBitSetZeroesIterator<'a> {
fn new(bitset: &'a FixedBitSet) -> ReverseFixedBitSetZeroesIterator<'a> {
ReverseFixedBitSetZeroesIterator {
bitset,
bit_index: (bitset.len() as isize) - 1,
}
}
}
impl<'a> Iterator for ReverseFixedBitSetZeroesIterator<'a> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
while self.bit_index >= 0 {
// Unpack the bit index into block and bit.
let block_index = self.bit_index / (Block::BITS as isize);
let bit_pos = self.bit_index % (Block::BITS as isize);
// Grab the block. Mask off all bits above the one we're scanning
// from by setting them all to 1.
let mut block = self.bitset.as_slice()[block_index as usize];
if bit_pos + 1 < (Block::BITS as isize) {
block |= (!0) << (bit_pos + 1);
}
// Search for the next unset bit. Note that the `leading_ones`
// function counts from the MSB to the LSB, so we need to flip it to
// get the bit number.
let pos = (Block::BITS as isize) - (block.leading_ones() as isize) - 1;
// If we found an unset bit, return it.
if pos != -1 {
let result = block_index * (Block::BITS as isize) + pos;
self.bit_index = result - 1;
return Some(result as usize);
}
// Otherwise, go to the previous block.
self.bit_index = block_index * (Block::BITS as isize) - 1;
}
None
}
}
#[cfg(test)]
mod test {
use super::ReverseFixedBitSetZeroesIterator;
use fixedbitset::FixedBitSet;
use proptest::{collection::vec, prop_assert_eq, proptest};
proptest! {
#[test]
fn reverse_fixed_bit_set_zeroes_iterator(
bits in vec(0usize..1024usize, 0usize..1024usize),
size in 0usize..1024usize,
) {
// Build a random bit set.
let mut bitset = FixedBitSet::new();
bitset.grow(size);
for bit in bits {
if bit < size {
bitset.set(bit, true);
}
}
// Iterate over the bit set backwards in a naive way, and check that
// that iteration sequence corresponds to the optimized one.
let mut iter = ReverseFixedBitSetZeroesIterator::new(&bitset);
for bit_index in (0..size).rev() {
if !bitset.contains(bit_index) {
prop_assert_eq!(iter.next(), Some(bit_index));
}
}
prop_assert_eq!(iter.next(), None);
}
}
}