 efda7f3f9c
			
		
	
	
		efda7f3f9c
		
			
		
	
	
	
	
		
			
			Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ```
		
			
				
	
	
		
			472 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! This mod re-exports the correct versions of floating-point operations with
 | |
| //! unspecified precision in the standard library depending on whether the `libm`
 | |
| //! crate feature is enabled.
 | |
| //!
 | |
| //! All the functions here are named according to their versions in the standard
 | |
| //! library.
 | |
| 
 | |
| #![allow(dead_code)]
 | |
| #![allow(clippy::disallowed_methods)]
 | |
| 
 | |
| // Note: There are some Rust methods with unspecified precision without a `libm`
 | |
| // equivalent:
 | |
| // - `f32::powi` (integer powers)
 | |
| // - `f32::log` (logarithm with specified base)
 | |
| // - `f32::abs_sub` (actually unsure if `libm` has this, but don't use it regardless)
 | |
| //
 | |
| // Additionally, the following nightly API functions are not presently integrated
 | |
| // into this, but they would be candidates once standardized:
 | |
| // - `f32::gamma`
 | |
| // - `f32::ln_gamma`
 | |
| 
 | |
| #[cfg(not(feature = "libm"))]
 | |
| mod std_ops {
 | |
| 
 | |
|     /// Raises a number to a floating point power.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn powf(x: f32, y: f32) -> f32 {
 | |
|         f32::powf(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Returns `e^(self)`, (the exponential function).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp(x: f32) -> f32 {
 | |
|         f32::exp(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `2^(self)`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp2(x: f32) -> f32 {
 | |
|         f32::exp2(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the natural logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn ln(x: f32) -> f32 {
 | |
|         f32::ln(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the base 2 logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn log2(x: f32) -> f32 {
 | |
|         f32::log2(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the base 10 logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn log10(x: f32) -> f32 {
 | |
|         f32::log10(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the cube root of a number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cbrt(x: f32) -> f32 {
 | |
|         f32::cbrt(x)
 | |
|     }
 | |
| 
 | |
|     /// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
 | |
|     /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn hypot(x: f32, y: f32) -> f32 {
 | |
|         f32::hypot(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Computes the sine of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sin(x: f32) -> f32 {
 | |
|         f32::sin(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the cosine of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cos(x: f32) -> f32 {
 | |
|         f32::cos(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the tangent of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn tan(x: f32) -> f32 {
 | |
|         f32::tan(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arcsine of a number. Return value is in radians in
 | |
|     /// the range [-pi/2, pi/2] or NaN if the number is outside the range
 | |
|     /// [-1, 1].
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn asin(x: f32) -> f32 {
 | |
|         f32::asin(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arccosine of a number. Return value is in radians in
 | |
|     /// the range [0, pi] or NaN if the number is outside the range
 | |
|     /// [-1, 1].
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn acos(x: f32) -> f32 {
 | |
|         f32::acos(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arctangent of a number. Return value is in radians in the
 | |
|     /// range [-pi/2, pi/2];
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atan(x: f32) -> f32 {
 | |
|         f32::atan(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
 | |
|     ///
 | |
|     /// * `x = 0`, `y = 0`: `0`
 | |
|     /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
 | |
|     /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
 | |
|     /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atan2(x: f32, y: f32) -> f32 {
 | |
|         f32::atan2(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Simultaneously computes the sine and cosine of the number, `x`. Returns
 | |
|     /// `(sin(x), cos(x))`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sin_cos(x: f32) -> (f32, f32) {
 | |
|         f32::sin_cos(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `e^(self) - 1` in a way that is accurate even if the
 | |
|     /// number is close to zero.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp_m1(x: f32) -> f32 {
 | |
|         f32::exp_m1(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `ln(1+n)` (natural logarithm) more accurately than if
 | |
|     /// the operations were performed separately.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn ln_1p(x: f32) -> f32 {
 | |
|         f32::ln_1p(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic sine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sinh(x: f32) -> f32 {
 | |
|         f32::sinh(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic cosine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cosh(x: f32) -> f32 {
 | |
|         f32::cosh(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic tangent function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn tanh(x: f32) -> f32 {
 | |
|         f32::tanh(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic sine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn asinh(x: f32) -> f32 {
 | |
|         f32::asinh(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic cosine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn acosh(x: f32) -> f32 {
 | |
|         f32::acosh(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic tangent function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atanh(x: f32) -> f32 {
 | |
|         f32::atanh(x)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "libm")]
 | |
| mod libm_ops {
 | |
| 
 | |
|     /// Raises a number to a floating point power.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn powf(x: f32, y: f32) -> f32 {
 | |
|         libm::powf(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Returns `e^(self)`, (the exponential function).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp(x: f32) -> f32 {
 | |
|         libm::expf(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `2^(self)`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp2(x: f32) -> f32 {
 | |
|         libm::exp2f(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the natural logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn ln(x: f32) -> f32 {
 | |
|         // This isn't documented in `libm` but this is actually the base e logarithm.
 | |
|         libm::logf(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the base 2 logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn log2(x: f32) -> f32 {
 | |
|         libm::log2f(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the base 10 logarithm of the number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn log10(x: f32) -> f32 {
 | |
|         libm::log10f(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns the cube root of a number.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cbrt(x: f32) -> f32 {
 | |
|         libm::cbrtf(x)
 | |
|     }
 | |
| 
 | |
|     /// Compute the distance between the origin and a point `(x, y)` on the Euclidean plane.
 | |
|     ///
 | |
|     /// Equivalently, compute the length of the hypotenuse of a right-angle triangle with other sides having length `x.abs()` and `y.abs()`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn hypot(x: f32, y: f32) -> f32 {
 | |
|         libm::hypotf(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Computes the sine of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sin(x: f32) -> f32 {
 | |
|         libm::sinf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the cosine of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cos(x: f32) -> f32 {
 | |
|         libm::cosf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the tangent of a number (in radians).
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn tan(x: f32) -> f32 {
 | |
|         libm::tanf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arcsine of a number. Return value is in radians in
 | |
|     /// the range [-pi/2, pi/2] or NaN if the number is outside the range
 | |
|     /// [-1, 1].
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn asin(x: f32) -> f32 {
 | |
|         libm::asinf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arccosine of a number. Return value is in radians in
 | |
|     /// Hyperbolic tangent function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     /// the range [0, pi] or NaN if the number is outside the range
 | |
|     /// [-1, 1].
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn acos(x: f32) -> f32 {
 | |
|         libm::acosf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the arctangent of a number. Return value is in radians in the
 | |
|     /// range [-pi/2, pi/2];
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atan(x: f32) -> f32 {
 | |
|         libm::atanf(x)
 | |
|     }
 | |
| 
 | |
|     /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
 | |
|     ///
 | |
|     /// * `x = 0`, `y = 0`: `0`
 | |
|     /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
 | |
|     /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
 | |
|     /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atan2(x: f32, y: f32) -> f32 {
 | |
|         libm::atan2f(x, y)
 | |
|     }
 | |
| 
 | |
|     /// Simultaneously computes the sine and cosine of the number, `x`. Returns
 | |
|     /// `(sin(x), cos(x))`.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sin_cos(x: f32) -> (f32, f32) {
 | |
|         libm::sincosf(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `e^(self) - 1` in a way that is accurate even if the
 | |
|     /// number is close to zero.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn exp_m1(x: f32) -> f32 {
 | |
|         libm::expm1f(x)
 | |
|     }
 | |
| 
 | |
|     /// Returns `ln(1+n)` (natural logarithm) more accurately than if
 | |
|     /// the operations were performed separately.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn ln_1p(x: f32) -> f32 {
 | |
|         libm::log1pf(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic sine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn sinh(x: f32) -> f32 {
 | |
|         libm::sinhf(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic cosine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn cosh(x: f32) -> f32 {
 | |
|         libm::coshf(x)
 | |
|     }
 | |
| 
 | |
|     /// Hyperbolic tangent function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn tanh(x: f32) -> f32 {
 | |
|         libm::tanhf(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic sine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn asinh(x: f32) -> f32 {
 | |
|         libm::asinhf(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic cosine function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn acosh(x: f32) -> f32 {
 | |
|         libm::acoshf(x)
 | |
|     }
 | |
| 
 | |
|     /// Inverse hyperbolic tangent function.
 | |
|     ///
 | |
|     /// Precision is specified when the `libm` feature is enabled.
 | |
|     #[inline(always)]
 | |
|     pub fn atanh(x: f32) -> f32 {
 | |
|         libm::atanhf(x)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "libm")]
 | |
| pub use libm_ops::*;
 | |
| 
 | |
| #[cfg(not(feature = "libm"))]
 | |
| pub use std_ops::*;
 | |
| 
 | |
| /// This extension trait covers shortfall in determinacy from the lack of a `libm` counterpart
 | |
| /// to `f32::powi`. Use this for the common small exponents.
 | |
| pub trait FloatPow {
 | |
|     /// Squares the f32
 | |
|     fn squared(self) -> Self;
 | |
|     /// Cubes the f32
 | |
|     fn cubed(self) -> Self;
 | |
| }
 | |
| 
 | |
| impl FloatPow for f32 {
 | |
|     #[inline]
 | |
|     fn squared(self) -> Self {
 | |
|         self * self
 | |
|     }
 | |
|     #[inline]
 | |
|     fn cubed(self) -> Self {
 | |
|         self * self * self
 | |
|     }
 | |
| }
 |