## Objective
- Provide a way to use `CubicCurve` non-iter methods
- Accept a `FnMut` over a `fn` pointer on `iter_samples`
- Improve `build_*_cubic_100_points` benchmark by -45% (this means they
are twice as fast)
### Solution
Previously, the only way to iterate over an evenly spaced set of points
on a `CubicCurve` was to use one of the `iter_*` methods.
The return value of those methods were bound by `&self` lifetime, making
them unusable in certain contexts.
Furthermore, other `CubicCurve` methods (`position`, `velocity`,
`acceleration`) required normalizing `t` over the `CubicCurve`'s
internal segment count.
There were no way to access this segment count, making those methods
pretty much unusable.
The newly added `segment_count` allows accessing the segment count.
`iter_samples` used to accept a `fn`, a function pointer. This is
surprising and contrary to the rust stdlib APIs, which accept `Fn`
traits for `Iterator` combinators.
`iter_samples` now accepts a `FnMut`.
I don't trust a bit the bevy benchmark suit, but according to it, this
doubles (-45%) the performance on the `build_pos_cubic_100_points` and
`build_accel_cubic_100_points` benchmarks.
---
## Changelog
- Added the `CubicCurve::segments` method to access the underlying
segments of a cubic curve
- Allow closures as `CubicCurve::iter_samples` `sample_function`
argument.