bevy/crates/bevy_ecs/src/lib.rs
rewin 8bf5d99d86
Add method to remove component and all required components for removed component (#15026)
## Objective
The new Required Components feature (#14791) in Bevy allows spawning a
fixed set of components with a single method with cool require macro.
However, there's currently no corresponding method to remove all those
components together. This makes it challenging to keep insertion and
removal code in sync, especially for simple using cases.
```rust
#[derive(Component)]
#[require(Y)]
struct X;

#[derive(Component, Default)]
struct Y;

world.entity_mut(e).insert(X); // Spawns both X and Y
world.entity_mut(e).remove::<X>(); 
world.entity_mut(e).remove::<Y>(); // We need to manually remove dependencies without any sync with the `require` macro
```
## Solution
Simplifies component management by providing operations for removal
required components.
This PR introduces simple 'footgun' methods to removes all components of
this bundle and its required components.

Two new methods are introduced:
For Commands:
```rust
commands.entity(e).remove_with_requires::<B>();
```
For World:
```rust
world.entity_mut(e).remove_with_requires::<B>();
```

For performance I created new field in Bundels struct. This new field
"contributed_bundle_ids" contains cached ids for dynamic bundles
constructed from bundle_info.cintributed_components()

## Testing
The PR includes three test cases:

1. Removing a single component with requirements using World.
2. Removing a bundle with requirements using World.
3. Removing a single component with requirements using Commands.
4. Removing a single component with **runtime** requirements using
Commands

These tests ensure the feature works as expected across different
scenarios.

## Showcase
Example:
```rust
use bevy_ecs::prelude::*;

#[derive(Component)]
#[require(Y)]
struct X;

#[derive(Component, Default)]
#[require(Z)]
struct Y;

#[derive(Component, Default)]
struct Z;

#[derive(Component)]
struct W;

let mut world = World::new();

// Spawn an entity with X, Y, Z, and W components
let entity = world.spawn((X, W)).id();

assert!(world.entity(entity).contains::<X>());
assert!(world.entity(entity).contains::<Y>());
assert!(world.entity(entity).contains::<Z>());
assert!(world.entity(entity).contains::<W>());

// Remove X and required components Y, Z
world.entity_mut(entity).remove_with_requires::<X>();

assert!(!world.entity(entity).contains::<X>());
assert!(!world.entity(entity).contains::<Y>());
assert!(!world.entity(entity).contains::<Z>());

assert!(world.entity(entity).contains::<W>());
```

## Motivation for PR
#15580 

## Performance

I made simple benchmark
```rust
let mut world = World::default();
let entity = world.spawn_empty().id();

let steps = 100_000_000;

let start = std::time::Instant::now();
for _ in 0..steps {
    world.entity_mut(entity).insert(X);
    world.entity_mut(entity).remove::<(X, Y, Z, W)>();
}
let end = std::time::Instant::now();
println!("normal remove: {:?} ", (end - start).as_secs_f32());
println!("one remove: {:?} micros", (end - start).as_secs_f64() / steps as f64 * 1_000_000.0);

let start = std::time::Instant::now();
for _ in 0..steps {
    world.entity_mut(entity).insert(X);
    world.entity_mut(entity).remove_with_requires::<X>();
}
let end = std::time::Instant::now();
println!("remove_with_requires: {:?} ", (end - start).as_secs_f32());
println!("one remove_with_requires: {:?} micros", (end - start).as_secs_f64() / steps as f64 * 1_000_000.0);
```

Output:

CPU: Amd Ryzen 7 2700x

```bash
normal remove: 17.36135 
one remove: 0.17361348299999999 micros
remove_with_requires: 17.534006 
one remove_with_requires: 0.17534005400000002 micros
```

NOTE: I didn't find any tests or mechanism in the repository to update
BundleInfo after creating new runtime requirements with an existing
BundleInfo. So this PR also does not contain such logic.

## Future work (outside this PR)

Create cache system for fast removing components in "safe" mode, where
"safe" mode is remove only required components that will be no longer
required after removing root component.

---------

Co-authored-by: a.yamaev <a.yamaev@smartengines.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-03 20:35:08 +00:00

2456 lines
75 KiB
Rust

// FIXME(11590): remove this once the lint is fixed
#![allow(unsafe_op_in_unsafe_fn)]
#![doc = include_str!("../README.md")]
// `rustdoc_internals` is needed for `#[doc(fake_variadics)]`
#![allow(internal_features)]
#![cfg_attr(any(docsrs, docsrs_dep), feature(doc_auto_cfg, rustdoc_internals))]
#![allow(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
#[cfg(target_pointer_width = "16")]
compile_error!("bevy_ecs cannot safely compile for a 16-bit platform.");
extern crate alloc;
pub mod archetype;
pub mod batching;
pub mod bundle;
pub mod change_detection;
pub mod component;
pub mod entity;
pub mod event;
pub mod identifier;
pub mod intern;
pub mod label;
pub mod observer;
pub mod query;
#[cfg(feature = "bevy_reflect")]
pub mod reflect;
pub mod removal_detection;
pub mod schedule;
pub mod storage;
pub mod system;
pub mod traversal;
pub mod world;
pub use bevy_ptr as ptr;
/// The ECS prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
#[doc(hidden)]
pub use crate::{
bundle::Bundle,
change_detection::{DetectChanges, DetectChangesMut, Mut, Ref},
component::Component,
entity::{Entity, EntityMapper},
event::{Event, EventMutator, EventReader, EventWriter, Events},
observer::{Observer, Trigger},
query::{Added, AnyOf, Changed, Has, Or, QueryBuilder, QueryState, With, Without},
removal_detection::RemovedComponents,
schedule::{
apply_deferred, common_conditions::*, Condition, IntoSystemConfigs, IntoSystemSet,
IntoSystemSetConfigs, Schedule, Schedules, SystemSet,
},
system::{
Commands, Deferred, EntityCommand, EntityCommands, In, InMut, InRef, IntoSystem, Local,
NonSend, NonSendMut, ParallelCommands, ParamSet, Populated, Query, ReadOnlySystem, Res,
ResMut, Resource, Single, System, SystemIn, SystemInput, SystemParamBuilder,
SystemParamFunction, WithParamWarnPolicy,
},
world::{
Command, EntityMut, EntityRef, EntityWorldMut, FilteredResources, FilteredResourcesMut,
FromWorld, OnAdd, OnInsert, OnRemove, OnReplace, World,
},
};
#[doc(hidden)]
#[cfg(feature = "bevy_reflect")]
pub use crate::reflect::{
AppTypeRegistry, ReflectComponent, ReflectFromWorld, ReflectResource,
};
#[doc(hidden)]
#[cfg(feature = "reflect_functions")]
pub use crate::reflect::AppFunctionRegistry;
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use crate::component::{RequiredComponents, RequiredComponentsError};
use crate::{
bundle::Bundle,
change_detection::Ref,
component::{Component, ComponentId},
entity::Entity,
prelude::Or,
query::{Added, Changed, FilteredAccess, QueryFilter, With, Without},
system::Resource,
world::{EntityMut, EntityRef, Mut, World},
};
use alloc::{sync::Arc, vec};
use bevy_ecs_macros::{VisitEntities, VisitEntitiesMut};
use bevy_tasks::{ComputeTaskPool, TaskPool};
use bevy_utils::HashSet;
use core::{
any::TypeId,
marker::PhantomData,
num::NonZero,
sync::atomic::{AtomicUsize, Ordering},
};
use std::sync::Mutex;
#[derive(Component, Resource, Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct A(usize);
#[derive(Component, Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct B(usize);
#[derive(Component, Debug, PartialEq, Eq, Clone, Copy)]
struct C;
#[allow(dead_code)]
#[derive(Default)]
struct NonSendA(usize, PhantomData<*mut ()>);
#[derive(Component, Clone, Debug)]
struct DropCk(Arc<AtomicUsize>);
impl DropCk {
fn new_pair() -> (Self, Arc<AtomicUsize>) {
let atomic = Arc::new(AtomicUsize::new(0));
(DropCk(atomic.clone()), atomic)
}
}
impl Drop for DropCk {
fn drop(&mut self) {
self.0.as_ref().fetch_add(1, Ordering::Relaxed);
}
}
// TODO: The compiler says the Debug and Clone are removed during dead code analysis. Investigate.
#[allow(dead_code)]
#[derive(Component, Clone, Debug)]
#[component(storage = "SparseSet")]
struct DropCkSparse(DropCk);
#[derive(Component, Copy, Clone, PartialEq, Eq, Debug)]
#[component(storage = "Table")]
struct TableStored(&'static str);
#[derive(Component, Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[component(storage = "SparseSet")]
struct SparseStored(u32);
#[test]
fn random_access() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(f).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 42);
}
#[test]
fn bundle_derive() {
let mut world = World::new();
#[derive(Bundle, PartialEq, Debug)]
struct FooBundle {
x: TableStored,
y: SparseStored,
}
let mut ids = Vec::new();
<FooBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.register_component::<TableStored>(),
world.register_component::<SparseStored>(),
]
);
let e1 = world
.spawn(FooBundle {
x: TableStored("abc"),
y: SparseStored(123),
})
.id();
let e2 = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e1).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(e2).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e1).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(e2).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 42);
assert_eq!(
world.entity_mut(e1).take::<FooBundle>().unwrap(),
FooBundle {
x: TableStored("xyz"),
y: SparseStored(123),
}
);
#[derive(Bundle, PartialEq, Debug)]
struct NestedBundle {
a: A,
foo: FooBundle,
b: B,
}
let mut ids = Vec::new();
<NestedBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.register_component::<A>(),
world.register_component::<TableStored>(),
world.register_component::<SparseStored>(),
world.register_component::<B>(),
]
);
let e3 = world
.spawn(NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
})
.id();
assert_eq!(world.get::<TableStored>(e3).unwrap().0, "ghi");
assert_eq!(world.get::<SparseStored>(e3).unwrap().0, 789);
assert_eq!(world.get::<A>(e3).unwrap().0, 1);
assert_eq!(world.get::<B>(e3).unwrap().0, 2);
assert_eq!(
world.entity_mut(e3).take::<NestedBundle>().unwrap(),
NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
}
);
#[derive(Default, Component, PartialEq, Debug)]
struct Ignored;
#[derive(Bundle, PartialEq, Debug)]
struct BundleWithIgnored {
c: C,
#[bundle(ignore)]
ignored: Ignored,
}
let mut ids = Vec::new();
<BundleWithIgnored as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(ids, &[world.register_component::<C>(),]);
let e4 = world
.spawn(BundleWithIgnored {
c: C,
ignored: Ignored,
})
.id();
assert_eq!(world.get::<C>(e4).unwrap(), &C);
assert_eq!(world.get::<Ignored>(e4), None);
assert_eq!(
world.entity_mut(e4).take::<BundleWithIgnored>().unwrap(),
BundleWithIgnored {
c: C,
ignored: Ignored,
}
);
}
#[test]
fn despawn_table_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<A>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<A>(f).unwrap().0, 456);
}
#[test]
fn despawn_mixed_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world.spawn((TableStored("def"), SparseStored(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<SparseStored>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
}
#[test]
fn query_all() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let ents = world
.query::<(Entity, &A, &TableStored)>()
.iter(&world)
.map(|(e, &i, &s)| (e, i, s))
.collect::<Vec<_>>();
assert_eq!(
ents,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_all_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let mut results = Vec::new();
world
.query::<(Entity, &A, &TableStored)>()
.iter(&world)
.for_each(|(e, &i, &s)| results.push((e, i, s)));
assert_eq!(
results,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_single_component() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &A)>()
.iter(&world)
.map(|(e, &i)| (e, i))
.collect::<HashSet<_>>();
assert!(ents.contains(&(e, A(123))));
assert!(ents.contains(&(f, A(456))));
}
#[test]
fn stateful_query_handles_new_archetype() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let mut query = world.query::<(Entity, &A)>();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123))]);
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123)), (f, A(456))]);
}
#[test]
fn query_single_component_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let mut results = HashSet::new();
world
.query::<(Entity, &A)>()
.iter(&world)
.for_each(|(e, &i)| {
results.insert((e, i));
});
assert!(results.contains(&(e, A(123))));
assert!(results.contains(&(f, A(456))));
}
#[test]
fn par_for_each_dense() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(A(1)).id();
let e2 = world.spawn(A(2)).id();
let e3 = world.spawn(A(3)).id();
let e4 = world.spawn((A(4), B(1))).id();
let e5 = world.spawn((A(5), B(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &A)>()
.par_iter(&world)
.for_each(|(e, &A(i))| {
results.lock().unwrap().push((e, i));
});
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn par_for_each_sparse() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(SparseStored(1)).id();
let e2 = world.spawn(SparseStored(2)).id();
let e3 = world.spawn(SparseStored(3)).id();
let e4 = world.spawn((SparseStored(4), A(1))).id();
let e5 = world.spawn((SparseStored(5), A(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &SparseStored)>()
.par_iter(&world)
.for_each(|(e, &SparseStored(i))| results.lock().unwrap().push((e, i)));
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn query_missing_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
world.spawn((TableStored("def"), A(456)));
assert!(world.query::<(&B, &A)>().iter(&world).next().is_none());
}
#[test]
fn query_sparse_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &B)>()
.iter(&world)
.map(|(e, &b)| (e, b))
.collect::<Vec<_>>();
assert_eq!(ents, &[(f, B(1))]);
}
#[test]
fn query_filter_with() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_for_each() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<B>>()
.iter(&world)
.for_each(|i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<SparseStored>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse_for_each() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<SparseStored>>()
.iter(&world)
.for_each(|i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_without() {
let mut world = World::new();
world.spawn((A(123), B(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, Without<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(456)]);
}
#[test]
fn query_optional_component_table() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
// this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&B>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<HashSet<_>>();
assert!(ents.contains(&(e, None, A(123))));
assert!(ents.contains(&(f, Some(B(1)), A(456))));
}
#[test]
fn query_optional_component_sparse() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world
.spawn((TableStored("def"), A(456), SparseStored(1)))
.id();
// this should be skipped
// world.spawn(SparseStored(1));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<HashSet<_>>();
assert_eq!(
ents,
HashSet::from([(e, None, A(123)), (f, Some(SparseStored(1)), A(456))])
);
}
#[test]
fn query_optional_component_sparse_no_match() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
// // this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<Vec<_>>();
assert_eq!(ents, &[(e, None, A(123)), (f, None, A(456))]);
}
#[test]
fn add_remove_components() {
let mut world = World::new();
let e1 = world.spawn((A(1), B(3), TableStored("abc"))).id();
let e2 = world.spawn((A(2), B(4), TableStored("xyz"))).id();
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<HashSet<_>>(),
HashSet::from([(e1, A(1), B(3)), (e2, A(2), B(4))])
);
assert_eq!(world.entity_mut(e1).take::<A>(), Some(A(1)));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<Vec<_>>(),
&[(e2, A(2), B(4))]
);
assert_eq!(
world
.query::<(Entity, &B, &TableStored)>()
.iter(&world)
.map(|(e, &B(b), &TableStored(s))| (e, b, s))
.collect::<HashSet<_>>(),
HashSet::from([(e2, 4, "xyz"), (e1, 3, "abc")])
);
world.entity_mut(e1).insert(A(43));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<HashSet<_>>(),
HashSet::from([(e2, A(2), B(4)), (e1, A(43), B(3))])
);
world.entity_mut(e1).insert(C);
assert_eq!(
world
.query::<(Entity, &C)>()
.iter(&world)
.map(|(e, &f)| (e, f))
.collect::<Vec<_>>(),
&[(e1, C)]
);
}
#[test]
fn table_add_remove_many() {
let mut world = World::default();
#[cfg(miri)]
let (mut entities, to) = {
let to = 10;
(Vec::with_capacity(to), to)
};
#[cfg(not(miri))]
let (mut entities, to) = {
let to = 10_000;
(Vec::with_capacity(to), to)
};
for _ in 0..to {
entities.push(world.spawn(B(0)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(A(i));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(world.entity_mut(entity).take::<A>(), Some(A(i)));
}
}
#[test]
fn sparse_set_add_remove_many() {
let mut world = World::default();
let mut entities = Vec::with_capacity(1000);
for _ in 0..4 {
entities.push(world.spawn(A(2)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(SparseStored(i as u32));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(
world.entity_mut(entity).take::<SparseStored>(),
Some(SparseStored(i as u32))
);
}
}
#[test]
fn remove_missing() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
assert!(world.entity_mut(e).take::<B>().is_none());
}
#[test]
fn spawn_batch() {
let mut world = World::new();
world.spawn_batch((0..100).map(|x| (A(x), TableStored("abc"))));
let values = world
.query::<&A>()
.iter(&world)
.map(|v| v.0)
.collect::<Vec<_>>();
let expected = (0..100).collect::<Vec<_>>();
assert_eq!(values, expected);
}
#[test]
fn query_get() {
let mut world = World::new();
let a = world.spawn((TableStored("abc"), A(123))).id();
let b = world.spawn((TableStored("def"), A(456))).id();
let c = world.spawn((TableStored("ghi"), A(789), B(1))).id();
let mut i32_query = world.query::<&A>();
assert_eq!(i32_query.get(&world, a).unwrap().0, 123);
assert_eq!(i32_query.get(&world, b).unwrap().0, 456);
let mut i32_bool_query = world.query::<(&A, &B)>();
assert!(i32_bool_query.get(&world, a).is_err());
assert_eq!(i32_bool_query.get(&world, c).unwrap(), (&A(789), &B(1)));
assert!(world.despawn(a));
assert!(i32_query.get(&world, a).is_err());
}
#[test]
fn query_get_works_across_sparse_removal() {
// Regression test for: https://github.com/bevyengine/bevy/issues/6623
let mut world = World::new();
let a = world.spawn((TableStored("abc"), SparseStored(123))).id();
let b = world.spawn((TableStored("def"), SparseStored(456))).id();
let c = world
.spawn((TableStored("ghi"), SparseStored(789), B(1)))
.id();
let mut query = world.query::<&TableStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
world.entity_mut(b).remove::<SparseStored>();
world.entity_mut(c).remove::<SparseStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
}
#[test]
fn remove_tracking() {
let mut world = World::new();
let a = world.spawn((SparseStored(0), A(123))).id();
let b = world.spawn((SparseStored(1), A(123))).id();
world.entity_mut(a).despawn();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for table components"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for sparse set components"
);
world.entity_mut(b).insert(B(1));
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"archetype moves does not result in 'removed component' state"
);
world.entity_mut(b).remove::<A>();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a, b],
"removing a component results in a 'removed component' state"
);
world.clear_trackers();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
assert_eq!(
world.removed::<B>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
// TODO: uncomment when world.clear() is implemented
// let c = world.spawn(("abc", 123)).id();
// let d = world.spawn(("abc", 123)).id();
// world.clear();
// assert_eq!(
// world.removed::<i32>(),
// &[c, d],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<&'static str>(),
// &[c, d, b],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<f64>(),
// &[b],
// "world clears result in 'removed component' states"
// );
}
#[test]
fn added_tracking() {
let mut world = World::new();
let a = world.spawn(A(123)).id();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
world.clear_trackers();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
}
#[test]
fn added_queries() {
let mut world = World::default();
let e1 = world.spawn(A(0)).id();
fn get_added<Com: Component>(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Added<Com>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_added::<A>(&mut world), vec![e1]);
world.entity_mut(e1).insert(B(0));
assert_eq!(get_added::<A>(&mut world), vec![e1]);
assert_eq!(get_added::<B>(&mut world), vec![e1]);
world.clear_trackers();
assert!(get_added::<A>(&mut world).is_empty());
let e2 = world.spawn((A(1), B(1))).id();
assert_eq!(get_added::<A>(&mut world), vec![e2]);
assert_eq!(get_added::<B>(&mut world), vec![e2]);
let added = world
.query_filtered::<Entity, (Added<A>, Added<B>)>()
.iter(&world)
.collect::<Vec<Entity>>();
assert_eq!(added, vec![e2]);
}
#[test]
fn changed_trackers() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
let e2 = world.spawn((A(0), B(0))).id();
let e3 = world.spawn((A(0), B(0))).id();
world.spawn((A(0), B(0)));
world.clear_trackers();
for (i, mut a) in world.query::<&mut A>().iter_mut(&mut world).enumerate() {
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: QueryFilter>(world: &mut World) -> HashSet<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<HashSet<Entity>>()
}
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e1, e3])
);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// spawning a new A entity should not change existing changed state
world.entity_mut(e1).insert((A(0), B(0)));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3]),
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<A>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(A(0));
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Added<A>>(&mut world), HashSet::from([e4]));
world.entity_mut(e4).insert(A(1));
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert((A(0), B(0)));
assert!(get_filtered::<Added<A>>(&mut world).is_empty());
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Added<B>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Changed<B>>(&mut world), HashSet::from([e4]));
}
#[test]
fn changed_trackers_sparse() {
let mut world = World::default();
let e1 = world.spawn(SparseStored(0)).id();
let e2 = world.spawn(SparseStored(0)).id();
let e3 = world.spawn(SparseStored(0)).id();
world.spawn(SparseStored(0));
world.clear_trackers();
for (i, mut a) in world
.query::<&mut SparseStored>()
.iter_mut(&mut world)
.enumerate()
{
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: QueryFilter>(world: &mut World) -> HashSet<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<HashSet<Entity>>()
}
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e1, e3])
);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), HashSet::from([e3, e1]), "changed entities list should not change (although the order will due to archetype moves)");
// spawning a new SparseStored entity should not change existing changed state
world.entity_mut(e1).insert(SparseStored(0));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3]),
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<SparseStored>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(SparseStored(0));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
assert_eq!(
get_filtered::<Added<SparseStored>>(&mut world),
HashSet::from([e4])
);
world.entity_mut(e4).insert(A(1));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert(SparseStored(0));
assert!(get_filtered::<Added<SparseStored>>(&mut world).is_empty());
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
}
#[test]
fn empty_spawn() {
let mut world = World::default();
let e = world.spawn_empty().id();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn reserve_and_spawn() {
let mut world = World::default();
let e = world.entities().reserve_entity();
world.flush_entities();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn changed_query() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
fn get_changed(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Changed<A>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_changed(&mut world), vec![e1]);
world.clear_trackers();
assert_eq!(get_changed(&mut world), vec![]);
*world.get_mut(e1).unwrap() = A(1);
assert_eq!(get_changed(&mut world), vec![e1]);
}
#[test]
fn resource() {
use crate::system::Resource;
#[derive(Resource, PartialEq, Debug)]
struct Num(i32);
#[derive(Resource, PartialEq, Debug)]
struct BigNum(u64);
let mut world = World::default();
assert!(world.get_resource::<Num>().is_none());
assert!(!world.contains_resource::<Num>());
assert!(!world.is_resource_added::<Num>());
assert!(!world.is_resource_changed::<Num>());
world.insert_resource(Num(123));
let resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
let archetype_component_id = world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(world.resource::<Num>().0, 123);
assert!(world.contains_resource::<Num>());
assert!(world.is_resource_added::<Num>());
assert!(world.is_resource_changed::<Num>());
world.insert_resource(BigNum(456));
assert_eq!(world.resource::<BigNum>().0, 456u64);
world.insert_resource(BigNum(789));
assert_eq!(world.resource::<BigNum>().0, 789);
{
let mut value = world.resource_mut::<BigNum>();
assert_eq!(value.0, 789);
value.0 = 10;
}
assert_eq!(
world.resource::<BigNum>().0,
10,
"resource changes are preserved"
);
assert_eq!(
world.remove_resource::<BigNum>(),
Some(BigNum(10)),
"removed resource has the correct value"
);
assert_eq!(
world.get_resource::<BigNum>(),
None,
"removed resource no longer exists"
);
assert_eq!(
world.remove_resource::<BigNum>(),
None,
"double remove returns nothing"
);
world.insert_resource(BigNum(1));
assert_eq!(
world.get_resource::<BigNum>(),
Some(&BigNum(1)),
"re-inserting resources works"
);
assert_eq!(
world.get_resource::<Num>(),
Some(&Num(123)),
"other resources are unaffected"
);
let current_resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
assert_eq!(
resource_id, current_resource_id,
"resource id does not change after removing / re-adding"
);
let current_archetype_component_id =
world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(
archetype_component_id, current_archetype_component_id,
"resource archetype component id does not change after removing / re-adding"
);
}
#[test]
fn remove() {
let mut world = World::default();
let e1 = world.spawn((A(1), B(1), TableStored("a"))).id();
let mut e = world.entity_mut(e1);
assert_eq!(e.get::<TableStored>(), Some(&TableStored("a")));
assert_eq!(e.get::<A>(), Some(&A(1)));
assert_eq!(e.get::<B>(), Some(&B(1)));
assert_eq!(
e.get::<C>(),
None,
"C is not in the entity, so it should not exist"
);
e.remove::<(A, B, C)>();
assert_eq!(
e.get::<TableStored>(),
Some(&TableStored("a")),
"TableStored is not in the removed bundle, so it should exist"
);
assert_eq!(
e.get::<A>(),
None,
"Num is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<B>(),
None,
"f64 is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<C>(),
None,
"usize is in the removed bundle, so it should not exist"
);
}
#[test]
fn take() {
let mut world = World::default();
world.spawn((A(1), B(1), TableStored("1")));
let e2 = world.spawn((A(2), B(2), TableStored("2"))).id();
world.spawn((A(3), B(3), TableStored("3")));
let mut query = world.query::<(&B, &TableStored)>();
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([(1, "1"), (2, "2"), (3, "3"),]));
let removed_bundle = world.entity_mut(e2).take::<(B, TableStored)>().unwrap();
assert_eq!(removed_bundle, (B(2), TableStored("2")));
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([(1, "1"), (3, "3"),]));
let mut a_query = world.query::<&A>();
let results = a_query.iter(&world).map(|a| a.0).collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([1, 3, 2]));
let entity_ref = world.entity(e2);
assert_eq!(
entity_ref.get::<A>(),
Some(&A(2)),
"A is not in the removed bundle, so it should exist"
);
assert_eq!(
entity_ref.get::<B>(),
None,
"B is in the removed bundle, so it should not exist"
);
assert_eq!(
entity_ref.get::<TableStored>(),
None,
"TableStored is in the removed bundle, so it should not exist"
);
}
#[test]
fn non_send_resource() {
let mut world = World::default();
world.insert_non_send_resource(123i32);
world.insert_non_send_resource(456i64);
assert_eq!(*world.non_send_resource::<i32>(), 123);
assert_eq!(*world.non_send_resource_mut::<i64>(), 456);
}
#[test]
fn non_send_resource_points_to_distinct_data() {
let mut world = World::default();
world.insert_resource(A(123));
world.insert_non_send_resource(A(456));
assert_eq!(*world.resource::<A>(), A(123));
assert_eq!(*world.non_send_resource::<A>(), A(456));
}
#[test]
#[should_panic]
fn non_send_resource_panic() {
let mut world = World::default();
world.insert_non_send_resource(0i32);
std::thread::spawn(move || {
let _ = world.non_send_resource_mut::<i32>();
})
.join()
.unwrap();
}
#[test]
fn exact_size_query() {
let mut world = World::default();
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0), C));
world.spawn(C);
let mut query = world.query::<(&A, &B)>();
assert_eq!(query.iter(&world).len(), 3);
}
#[test]
#[should_panic]
fn duplicate_components_panic() {
let mut world = World::new();
world.spawn((A(1), A(2)));
}
#[test]
#[should_panic]
fn ref_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&A, &mut A)>();
}
#[test]
#[should_panic]
fn entity_ref_and_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityRef, &mut A)>();
}
#[test]
#[should_panic]
fn mut_and_ref_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &A)>();
}
#[test]
#[should_panic]
fn mut_and_entity_ref_query_panic() {
let mut world = World::new();
world.query::<(&mut A, EntityRef)>();
}
#[test]
#[should_panic]
fn entity_ref_and_entity_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityRef, EntityMut)>();
}
#[test]
#[should_panic]
fn entity_mut_and_entity_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityMut, EntityMut)>();
}
#[test]
fn entity_ref_and_entity_ref_query_no_panic() {
let mut world = World::new();
world.query::<(EntityRef, EntityRef)>();
}
#[test]
#[should_panic]
fn mut_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &mut A)>();
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_iter() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.iter(&world_a);
query.iter(&world_b);
}
#[test]
fn query_filters_dont_collide_with_fetches() {
let mut world = World::new();
world.query_filtered::<&mut A, Changed<A>>();
}
#[test]
fn filtered_query_access() {
let mut world = World::new();
let query = world.query_filtered::<&mut A, Changed<B>>();
let mut expected = FilteredAccess::<ComponentId>::default();
let a_id = world.components.get_id(TypeId::of::<A>()).unwrap();
let b_id = world.components.get_id(TypeId::of::<B>()).unwrap();
expected.add_component_write(a_id);
expected.add_component_read(b_id);
assert!(
query.component_access.eq(&expected),
"ComponentId access from query fetch and query filter should be combined"
);
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_get() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
let _ = query.get(&world_a, Entity::from_raw(0));
let _ = query.get(&world_b, Entity::from_raw(0));
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_for_each() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.iter(&world_a).for_each(|_| {});
query.iter(&world_b).for_each(|_| {});
}
#[test]
fn resource_scope() {
let mut world = World::default();
world.insert_resource(A(0));
world.resource_scope(|world: &mut World, mut value: Mut<A>| {
value.0 += 1;
assert!(!world.contains_resource::<A>());
});
assert_eq!(world.resource::<A>().0, 1);
}
#[test]
#[should_panic(
expected = "Attempted to access or drop non-send resource bevy_ecs::tests::NonSendA from thread"
)]
fn non_send_resource_drop_from_different_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
let thread = std::thread::spawn(move || {
// Dropping the non-send resource on a different thread
// Should result in a panic
drop(world);
});
if let Err(err) = thread.join() {
std::panic::resume_unwind(err);
}
}
#[test]
fn non_send_resource_drop_from_same_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
drop(world);
}
#[test]
fn insert_overwrite_drop() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world.spawn(dropck1).insert(dropck2);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn insert_overwrite_drop_sparse() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world
.spawn(DropCkSparse(dropck1))
.insert(DropCkSparse(dropck2));
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn clear_entities() {
let mut world = World::default();
world.insert_resource(A(0));
world.spawn(A(1));
world.spawn(SparseStored(1));
let mut q1 = world.query::<&A>();
let mut q2 = world.query::<&SparseStored>();
assert_eq!(q1.iter(&world).len(), 1);
assert_eq!(q2.iter(&world).len(), 1);
assert_eq!(world.entities().len(), 2);
world.clear_entities();
assert_eq!(
q1.iter(&world).len(),
0,
"world should not contain table components"
);
assert_eq!(
q2.iter(&world).len(),
0,
"world should not contain sparse set components"
);
assert_eq!(
world.entities().len(),
0,
"world should not have any entities"
);
assert_eq!(
world.resource::<A>().0,
0,
"world should still contain resources"
);
}
#[test]
fn test_is_archetypal_size_hints() {
let mut world = World::default();
macro_rules! query_min_size {
($query:ty, $filter:ty) => {
world
.query_filtered::<$query, $filter>()
.iter(&world)
.size_hint()
.0
};
}
world.spawn((A(1), B(1), C));
world.spawn((A(1), C));
world.spawn((A(1), B(1)));
world.spawn((B(1), C));
world.spawn(A(1));
world.spawn(C);
assert_eq!(2, query_min_size![(), (With<A>, Without<B>)]);
assert_eq!(3, query_min_size![&B, Or<(With<A>, With<C>)>]);
assert_eq!(1, query_min_size![&B, (With<A>, With<C>)]);
assert_eq!(1, query_min_size![(&A, &B), With<C>]);
assert_eq!(4, query_min_size![&A, ()], "Simple Archetypal");
assert_eq!(4, query_min_size![Ref<A>, ()]);
// All the following should set minimum size to 0, as it's impossible to predict
// how many entities the filters will trim.
assert_eq!(0, query_min_size![(), Added<A>], "Simple Added");
assert_eq!(0, query_min_size![(), Changed<A>], "Simple Changed");
assert_eq!(0, query_min_size![(&A, &B), Changed<A>]);
assert_eq!(0, query_min_size![&A, (Changed<A>, With<B>)]);
assert_eq!(0, query_min_size![(&A, &B), Or<(Changed<A>, Changed<B>)>]);
}
#[test]
fn reserve_entities_across_worlds() {
let mut world_a = World::default();
let mut world_b = World::default();
let e1 = world_a.spawn(A(1)).id();
let e2 = world_a.spawn(A(2)).id();
let e3 = world_a.entities().reserve_entity();
world_a.flush_entities();
let world_a_max_entities = world_a.entities().len();
world_b.entities.reserve_entities(world_a_max_entities);
world_b.entities.flush_as_invalid();
let e4 = world_b.spawn(A(4)).id();
assert_eq!(
e4,
Entity::from_raw(3),
"new entity is created immediately after world_a's max entity"
);
assert!(world_b.get::<A>(e1).is_none());
assert!(world_b.get_entity(e1).is_none());
assert!(world_b.get::<A>(e2).is_none());
assert!(world_b.get_entity(e2).is_none());
assert!(world_b.get::<A>(e3).is_none());
assert!(world_b.get_entity(e3).is_none());
world_b.get_or_spawn(e1).unwrap().insert(B(1));
assert_eq!(
world_b.get::<B>(e1),
Some(&B(1)),
"spawning into 'world_a' entities works"
);
world_b.get_or_spawn(e4).unwrap().insert(B(4));
assert_eq!(
world_b.get::<B>(e4),
Some(&B(4)),
"spawning into existing `world_b` entities works"
);
assert_eq!(
world_b.get::<A>(e4),
Some(&A(4)),
"spawning into existing `world_b` entities works"
);
let e4_mismatched_generation =
Entity::from_raw_and_generation(3, NonZero::<u32>::new(2).unwrap());
assert!(
world_b.get_or_spawn(e4_mismatched_generation).is_none(),
"attempting to spawn on top of an entity with a mismatched entity generation fails"
);
assert_eq!(
world_b.get::<B>(e4),
Some(&B(4)),
"failed mismatched spawn doesn't change existing entity"
);
assert_eq!(
world_b.get::<A>(e4),
Some(&A(4)),
"failed mismatched spawn doesn't change existing entity"
);
let high_non_existent_entity = Entity::from_raw(6);
world_b
.get_or_spawn(high_non_existent_entity)
.unwrap()
.insert(B(10));
assert_eq!(
world_b.get::<B>(high_non_existent_entity),
Some(&B(10)),
"inserting into newly allocated high / non-continuous entity id works"
);
let high_non_existent_but_reserved_entity = Entity::from_raw(5);
assert!(
world_b.get_entity(high_non_existent_but_reserved_entity).is_none(),
"entities between high-newly allocated entity and continuous block of existing entities don't exist"
);
let reserved_entities = vec![
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
world_b.entities().reserve_entity(),
];
assert_eq!(
reserved_entities,
vec![
Entity::from_raw(5),
Entity::from_raw(4),
Entity::from_raw(7),
Entity::from_raw(8),
],
"space between original entities and high entities is used for new entity ids"
);
}
#[test]
fn insert_or_spawn_batch() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let values = vec![(e0, (B(0), C)), (e1, (B(1), C))];
world.insert_or_spawn_batch(values).unwrap();
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
#[test]
fn insert_or_spawn_batch_invalid() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let e2 = world.spawn_empty().id();
let invalid_e2 =
Entity::from_raw_and_generation(e2.index(), NonZero::<u32>::new(2).unwrap());
let values = vec![(e0, (B(0), C)), (e1, (B(1), C)), (invalid_e2, (B(2), C))];
let result = world.insert_or_spawn_batch(values);
assert_eq!(
result,
Err(vec![invalid_e2]),
"e2 failed to be spawned or inserted into"
);
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
#[test]
fn required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component)]
#[require(Z(new_z))]
struct Y {
value: String,
}
#[derive(Component)]
struct Z(u32);
impl Default for Y {
fn default() -> Self {
Self {
value: "hello".to_string(),
}
}
}
fn new_z() -> Z {
Z(7)
}
let mut world = World::new();
let id = world.spawn(X).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world
.spawn((
X,
Y {
value: "foo".to_string(),
},
))
.id();
assert_eq!(
"foo",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the manually provided value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world.spawn((X, Z(8))).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
8,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the manually provided value"
);
}
#[test]
fn generic_required_components() {
#[derive(Component)]
#[require(Y<usize>)]
struct X;
#[derive(Component, Default)]
struct Y<T> {
value: T,
}
let mut world = World::new();
let id = world.spawn(X).id();
assert_eq!(
0,
world.entity(id).get::<Y<usize>>().unwrap().value,
"Y should have the default value"
);
}
#[test]
fn required_components_spawn_nonexistent_hooks() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Resource)]
struct A(usize);
#[derive(Resource)]
struct I(usize);
let mut world = World::new();
world.insert_resource(A(0));
world.insert_resource(I(0));
world
.register_component_hooks::<Y>()
.on_add(|mut world, _, _| world.resource_mut::<A>().0 += 1)
.on_insert(|mut world, _, _| world.resource_mut::<I>().0 += 1);
// Spawn entity and ensure Y was added
assert!(world.spawn(X).contains::<Y>());
assert_eq!(world.resource::<A>().0, 1);
assert_eq!(world.resource::<I>().0, 1);
}
#[test]
fn required_components_insert_existing_hooks() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Resource)]
struct A(usize);
#[derive(Resource)]
struct I(usize);
let mut world = World::new();
world.insert_resource(A(0));
world.insert_resource(I(0));
world
.register_component_hooks::<Y>()
.on_add(|mut world, _, _| world.resource_mut::<A>().0 += 1)
.on_insert(|mut world, _, _| world.resource_mut::<I>().0 += 1);
// Spawn entity and ensure Y was added
assert!(world.spawn_empty().insert(X).contains::<Y>());
assert_eq!(world.resource::<A>().0, 1);
assert_eq!(world.resource::<I>().0, 1);
}
#[test]
fn required_components_take_leaves_required() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
let e = world.spawn(X).id();
let _ = world.entity_mut(e).take::<X>().unwrap();
assert!(world.entity_mut(e).contains::<Y>());
}
#[test]
fn required_components_retain_keeps_required() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
let mut world = World::new();
let e = world.spawn((X, Z)).id();
world.entity_mut(e).retain::<X>();
assert!(world.entity_mut(e).contains::<X>());
assert!(world.entity_mut(e).contains::<Y>());
assert!(!world.entity_mut(e).contains::<Z>());
}
#[test]
fn required_components_spawn_then_insert_no_overwrite() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y(usize);
let mut world = World::new();
let id = world.spawn((X, Y(10))).id();
world.entity_mut(id).insert(X);
assert_eq!(
10,
world.entity(id).get::<Y>().unwrap().0,
"Y should still have the manually provided value"
);
}
#[test]
fn dynamic_required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
let x_id = world.register_component::<X>();
let mut e = world.spawn_empty();
// SAFETY: x_id is a valid component id
bevy_ptr::OwningPtr::make(X, |ptr| unsafe {
e.insert_by_id(x_id, ptr);
});
assert!(e.contains::<Y>());
}
#[test]
fn remove_component_and_his_runtime_required_components() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
#[derive(Component)]
struct V;
let mut world = World::new();
world.register_required_components::<X, Y>();
world.register_required_components::<Y, Z>();
let e = world.spawn((X, V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//check that `remove` works as expected
world.entity_mut(e).remove::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).insert(X);
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//remove `X` again and ensure that `Y` and `Z` was removed too
world.entity_mut(e).remove_with_requires::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn remove_component_and_his_required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
#[require(Z)]
struct Y;
#[derive(Component, Default)]
struct Z;
#[derive(Component)]
struct V;
let mut world = World::new();
let e = world.spawn((X, V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//check that `remove` works as expected
world.entity_mut(e).remove::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).insert(X);
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//remove `X` again and ensure that `Y` and `Z` was removed too
world.entity_mut(e).remove_with_requires::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn remove_bundle_and_his_required_components() {
#[derive(Component, Default)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
#[require(W)]
struct Z;
#[derive(Component, Default)]
struct W;
#[derive(Component)]
struct V;
#[derive(Bundle, Default)]
struct TestBundle {
x: X,
z: Z,
}
let mut world = World::new();
let e = world.spawn((TestBundle::default(), V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<W>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).remove_with_requires::<TestBundle>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(!world.entity(e).contains::<W>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn runtime_required_components() {
// Same as `required_components` test but with runtime registration
#[derive(Component)]
struct X;
#[derive(Component)]
struct Y {
value: String,
}
#[derive(Component)]
struct Z(u32);
impl Default for Y {
fn default() -> Self {
Self {
value: "hello".to_string(),
}
}
}
let mut world = World::new();
world.register_required_components::<X, Y>();
world.register_required_components_with::<Y, Z>(|| Z(7));
let id = world.spawn(X).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world
.spawn((
X,
Y {
value: "foo".to_string(),
},
))
.id();
assert_eq!(
"foo",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the manually provided value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world.spawn((X, Z(8))).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
8,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the manually provided value"
);
}
#[test]
fn runtime_required_components_override_1() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component)]
struct Z(u32);
let mut world = World::new();
// - X requires Y with default constructor
// - Y requires Z with custom constructor
// - X requires Z with custom constructor (more specific than X -> Y -> Z)
world.register_required_components::<X, Y>();
world.register_required_components_with::<Y, Z>(|| Z(5));
world.register_required_components_with::<X, Z>(|| Z(7));
let id = world.spawn(X).id();
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in X"
);
}
#[test]
fn runtime_required_components_override_2() {
// Same as `runtime_required_components_override_1` test but with different registration order
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component)]
struct Z(u32);
let mut world = World::new();
// - X requires Y with default constructor
// - X requires Z with custom constructor (more specific than X -> Y -> Z)
// - Y requires Z with custom constructor
world.register_required_components::<X, Y>();
world.register_required_components_with::<X, Z>(|| Z(7));
world.register_required_components_with::<Y, Z>(|| Z(5));
let id = world.spawn(X).id();
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in X"
);
}
#[test]
fn runtime_required_components_existing_archetype() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
// Registering required components after the archetype has already been created should panic.
// This may change in the future.
world.spawn(X);
assert!(matches!(
world.try_register_required_components::<X, Y>(),
Err(RequiredComponentsError::ArchetypeExists(_))
));
}
#[test]
fn runtime_required_components_fail_with_duplicate() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
// This should fail: Tried to register Y as a requirement for X, but the requirement already exists.
assert!(matches!(
world.try_register_required_components::<X, Y>(),
Err(RequiredComponentsError::DuplicateRegistration(_, _))
));
}
#[test]
fn required_components_inheritance_depth() {
// Test that inheritance depths are computed correctly for requirements.
//
// Requirements with `require` attribute:
//
// A -> B -> C
// 0 1
//
// Runtime requirements:
//
// X -> A -> B -> C
// 0 1 2
//
// X -> Y -> Z -> B -> C
// 0 1 2 3
#[derive(Component, Default)]
#[require(B)]
struct A;
#[derive(Component, Default)]
#[require(C)]
struct B;
#[derive(Component, Default)]
struct C;
#[derive(Component, Default)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
let mut world = World::new();
let a = world.register_component::<A>();
let b = world.register_component::<B>();
let c = world.register_component::<C>();
let y = world.register_component::<Y>();
let z = world.register_component::<Z>();
world.register_required_components::<X, A>();
world.register_required_components::<X, Y>();
world.register_required_components::<Y, Z>();
world.register_required_components::<Z, B>();
world.spawn(X);
let required_a = world.get_required_components::<A>().unwrap();
let required_b = world.get_required_components::<B>().unwrap();
let required_c = world.get_required_components::<C>().unwrap();
let required_x = world.get_required_components::<X>().unwrap();
let required_y = world.get_required_components::<Y>().unwrap();
let required_z = world.get_required_components::<Z>().unwrap();
/// Returns the component IDs and inheritance depths of the required components
/// in ascending order based on the component ID.
fn to_vec(required: &RequiredComponents) -> Vec<(ComponentId, u16)> {
let mut vec = required
.0
.iter()
.map(|(id, component)| (*id, component.inheritance_depth))
.collect::<Vec<_>>();
vec.sort_by_key(|(id, _)| *id);
vec
}
// Check that the inheritance depths are correct for each component.
assert_eq!(to_vec(required_a), vec![(b, 0), (c, 1)]);
assert_eq!(to_vec(required_b), vec![(c, 0)]);
assert_eq!(to_vec(required_c), vec![]);
assert_eq!(
to_vec(required_x),
vec![(a, 0), (b, 1), (c, 2), (y, 0), (z, 1)]
);
assert_eq!(to_vec(required_y), vec![(b, 1), (c, 2), (z, 0)]);
assert_eq!(to_vec(required_z), vec![(b, 0), (c, 1)]);
}
// These structs are primarily compilation tests to test the derive macros. Because they are
// never constructed, we have to manually silence the `dead_code` lint.
#[allow(dead_code)]
#[derive(Component)]
struct ComponentA(u32);
#[allow(dead_code)]
#[derive(Component)]
struct ComponentB(u32);
#[allow(dead_code)]
#[derive(Bundle)]
struct Simple(ComponentA);
#[allow(dead_code)]
#[derive(Bundle)]
struct Tuple(Simple, ComponentB);
#[allow(dead_code)]
#[derive(Bundle)]
struct Record {
field0: Simple,
field1: ComponentB,
}
#[allow(dead_code)]
#[derive(Component, VisitEntities, VisitEntitiesMut)]
struct MyEntities {
entities: Vec<Entity>,
another_one: Entity,
maybe_entity: Option<Entity>,
#[visit_entities(ignore)]
something_else: String,
}
#[allow(dead_code)]
#[derive(Component, VisitEntities, VisitEntitiesMut)]
struct MyEntitiesTuple(Vec<Entity>, Entity, #[visit_entities(ignore)] usize);
}