bevy/crates/bevy_ecs/src/event/mod.rs
Joona Aalto 38c3423693
Event Split: Event, EntityEvent, and BufferedEvent (#19647)
# Objective

Closes #19564.

The current `Event` trait looks like this:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.

However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:

- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.

There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:

|              | Push            | Pull                        |
| ------------ | --------------- | --------------------------- |
| **Global**   | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | -                           |

There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:

- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs

This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.

## `Event`, `EntityEvent`, and `BufferedEvent`

`Event` is now a very simple trait shared by all events.

```rust
pub trait Event: Send + Sync + 'static {
    // Required for observer APIs
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

You can call `trigger` for *any* event, and use a global observer for
listening to the event.

```rust
#[derive(Event)]
struct Speak {
    message: String,
}

// ...

app.add_observer(|trigger: On<Speak>| {
    println!("{}", trigger.message);
});

// ...

commands.trigger(Speak {
    message: "Y'all like these reworked events?".to_string(),
});
```

To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:

```rust
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:

```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
    amount: f32,
}

// ...

let enemy = commands.spawn((Enemy, Health(100.0))).id();

// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
    .spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
    .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
        // Note: `On::target` only exists because this is an `EntityEvent`.
        let mut health = query.get(trigger.target()).unwrap();
        health.0 -= trigger.amount();
    });

commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```

> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.

To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:

```rust
pub trait BufferedEvent: Event {}
```

The event can then be used with `EventReader`/`EventWriter`:

```rust
#[derive(Event, BufferedEvent)]
struct Message(String);

fn write_hello(mut writer: EventWriter<Message>) {
    writer.write(Message("I hope these examples are alright".to_string()));
}

fn read_messages(mut reader: EventReader<Message>) {
    // Process all buffered events of type `Message`.
    for Message(message) in reader.read() {
        println!("{message}");
    }
}
```

In summary:

- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!

## Alternatives

I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P

<details>

<summary>Expand this to see alternatives</summary>

### 1. Unified `Event` Trait

One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:

```rust
pub trait Event: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    const BUFFERED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.

This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?

### 2. `Event` and `Trigger`

Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.

If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.

For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.

```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}

// For observers
pub trait Trigger: Send + Sync + 'static {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
    const TARGETED: bool = false;
    
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```

The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.

So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)

### 3. `GlobalEvent` + `TargetedEvent`

What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?

```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}

// For targeted observer events
pub trait TargetedEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.

However, there's a few problems:

- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal

### 4. `Event` and `EntityEvent`

We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:

```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
    fn register_component_id(world: &mut World) -> ComponentId { ... }
    fn component_id(world: &World) -> Option<ComponentId> { ... }
}

// For targeted observer events
pub trait EntityEvent: Event {
    type Traversal: Traversal<Self>;
    const AUTO_PROPAGATE: bool = false;
}
```

This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.

</details>

## Conclusion

The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".

### Why I Like This

- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.

In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.

### Problems?

- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.

## Related Work

There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:

```rust
// Truncated for brevity
trigger: Trigger<(
    OnAdd<Pressed>,
    OnRemove<Pressed>,
    OnAdd<InteractionDisabled>,
    OnRemove<InteractionDisabled>,
    OnInsert<Hovered>,
)>,
```

I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
2025-06-15 16:46:34 +00:00

630 lines
20 KiB
Rust

//! Event handling types.
mod base;
mod collections;
mod event_cursor;
mod iterators;
mod mut_iterators;
mod mutator;
mod reader;
mod registry;
mod update;
mod writer;
pub(crate) use base::EventInstance;
pub use base::{BufferedEvent, EntityEvent, Event, EventId};
pub use bevy_ecs_macros::{BufferedEvent, EntityEvent, Event};
pub use collections::{Events, SendBatchIds};
pub use event_cursor::EventCursor;
#[cfg(feature = "multi_threaded")]
pub use iterators::EventParIter;
pub use iterators::{EventIterator, EventIteratorWithId};
#[cfg(feature = "multi_threaded")]
pub use mut_iterators::EventMutParIter;
pub use mut_iterators::{EventMutIterator, EventMutIteratorWithId};
pub use mutator::EventMutator;
pub use reader::EventReader;
pub use registry::{EventRegistry, ShouldUpdateEvents};
#[expect(
deprecated,
reason = "`EventUpdates` was renamed to `EventUpdateSystems`."
)]
pub use update::{
event_update_condition, event_update_system, signal_event_update_system, EventUpdateSystems,
EventUpdates,
};
pub use writer::EventWriter;
#[cfg(test)]
mod tests {
use alloc::{vec, vec::Vec};
use bevy_ecs::{event::*, system::assert_is_read_only_system};
use bevy_ecs_macros::BufferedEvent;
#[derive(Event, BufferedEvent, Copy, Clone, PartialEq, Eq, Debug)]
struct TestEvent {
i: usize,
}
#[derive(Event, BufferedEvent, Clone, PartialEq, Debug, Default)]
struct EmptyTestEvent;
fn get_events<E: BufferedEvent + Clone>(
events: &Events<E>,
cursor: &mut EventCursor<E>,
) -> Vec<E> {
cursor.read(events).cloned().collect::<Vec<E>>()
}
#[test]
fn test_events() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
// this reader will miss event_0 and event_1 because it wont read them over the course of
// two updates
let mut reader_missed: EventCursor<TestEvent> = events.get_cursor();
let mut reader_a: EventCursor<TestEvent> = events.get_cursor();
events.send(event_0);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_0],
"reader_a created before event receives event"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![],
"second iteration of reader_a created before event results in zero events"
);
let mut reader_b: EventCursor<TestEvent> = events.get_cursor();
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_0],
"reader_b created after event receives event"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![],
"second iteration of reader_b created after event results in zero events"
);
events.send(event_1);
let mut reader_c = events.get_cursor();
assert_eq!(
get_events(&events, &mut reader_c),
vec![event_0, event_1],
"reader_c created after two events receives both events"
);
assert_eq!(
get_events(&events, &mut reader_c),
vec![],
"second iteration of reader_c created after two event results in zero events"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_1],
"reader_a receives next unread event"
);
events.update();
let mut reader_d = events.get_cursor();
events.send(event_2);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_2],
"reader_a receives event created after update"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_1, event_2],
"reader_b receives events created before and after update"
);
assert_eq!(
get_events(&events, &mut reader_d),
vec![event_0, event_1, event_2],
"reader_d receives all events created before and after update"
);
events.update();
assert_eq!(
get_events(&events, &mut reader_missed),
vec![event_2],
"reader_missed missed events unread after two update() calls"
);
}
// Events Collection
fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events<TestEvent>)) {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_cursor();
assert!(reader.read(&events).next().is_none());
events.send(TestEvent { i: 0 });
assert_eq!(*reader.read(&events).next().unwrap(), TestEvent { i: 0 });
assert_eq!(reader.read(&events).next(), None);
events.send(TestEvent { i: 1 });
clear_func(&mut events);
assert!(reader.read(&events).next().is_none());
events.send(TestEvent { i: 2 });
events.update();
events.send(TestEvent { i: 3 });
assert!(reader
.read(&events)
.eq([TestEvent { i: 2 }, TestEvent { i: 3 }].iter()));
}
#[test]
fn test_events_clear_and_read() {
events_clear_and_read_impl(Events::clear);
}
#[test]
fn test_events_drain_and_read() {
events_clear_and_read_impl(|events| {
assert!(events
.drain()
.eq(vec![TestEvent { i: 0 }, TestEvent { i: 1 }].into_iter()));
});
}
#[test]
fn test_events_send_default() {
let mut events = Events::<EmptyTestEvent>::default();
events.send_default();
let mut reader = events.get_cursor();
assert_eq!(get_events(&events, &mut reader), vec![EmptyTestEvent]);
}
#[test]
fn test_send_events_ids() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
let event_0_id = events.send(event_0);
assert_eq!(
events.get_event(event_0_id.id),
Some((&event_0, event_0_id)),
"Getting a sent event by ID should return the original event"
);
let mut event_ids = events.send_batch([event_1, event_2]);
let event_id = event_ids.next().expect("Event 1 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_1, event_id)),
"Getting a sent event by ID should return the original event"
);
let event_id = event_ids.next().expect("Event 2 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_2, event_id)),
"Getting a sent event by ID should return the original event"
);
assert!(
event_ids.next().is_none(),
"Only sent two events; got more than two IDs"
);
}
#[test]
fn test_event_registry_can_add_and_remove_events_to_world() {
use bevy_ecs::prelude::*;
let mut world = World::new();
EventRegistry::register_event::<TestEvent>(&mut world);
let has_events = world.get_resource::<Events<TestEvent>>().is_some();
assert!(has_events, "Should have the events resource");
EventRegistry::deregister_events::<TestEvent>(&mut world);
let has_events = world.get_resource::<Events<TestEvent>>().is_some();
assert!(!has_events, "Should not have the events resource");
}
#[test]
fn test_events_update_drain() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_cursor();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
assert_eq!(reader.read(&events).count(), 2);
let mut old_events = Vec::from_iter(events.update_drain());
assert!(old_events.is_empty());
events.send(TestEvent { i: 2 });
assert_eq!(reader.read(&events).count(), 1);
old_events.extend(events.update_drain());
assert_eq!(old_events.len(), 2);
old_events.extend(events.update_drain());
assert_eq!(
old_events,
&[TestEvent { i: 0 }, TestEvent { i: 1 }, TestEvent { i: 2 }]
);
}
#[test]
fn test_events_empty() {
let mut events = Events::<TestEvent>::default();
assert!(events.is_empty());
events.send(TestEvent { i: 0 });
assert!(!events.is_empty());
events.update();
assert!(!events.is_empty());
// events are only empty after the second call to update
// due to double buffering.
events.update();
assert!(events.is_empty());
}
#[test]
fn test_events_extend_impl() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_cursor();
events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]);
assert!(reader
.read(&events)
.eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter()));
}
// Cursor
#[test]
fn test_event_cursor_read() {
let mut events = Events::<TestEvent>::default();
let mut cursor = events.get_cursor();
assert!(cursor.read(&events).next().is_none());
events.send(TestEvent { i: 0 });
let sent_event = cursor.read(&events).next().unwrap();
assert_eq!(sent_event, &TestEvent { i: 0 });
assert!(cursor.read(&events).next().is_none());
events.send(TestEvent { i: 2 });
let sent_event = cursor.read(&events).next().unwrap();
assert_eq!(sent_event, &TestEvent { i: 2 });
assert!(cursor.read(&events).next().is_none());
events.clear();
assert!(cursor.read(&events).next().is_none());
}
#[test]
fn test_event_cursor_read_mut() {
let mut events = Events::<TestEvent>::default();
let mut write_cursor = events.get_cursor();
let mut read_cursor = events.get_cursor();
assert!(write_cursor.read_mut(&mut events).next().is_none());
assert!(read_cursor.read(&events).next().is_none());
events.send(TestEvent { i: 0 });
let sent_event = write_cursor.read_mut(&mut events).next().unwrap();
assert_eq!(sent_event, &mut TestEvent { i: 0 });
*sent_event = TestEvent { i: 1 }; // Mutate whole event
assert_eq!(
read_cursor.read(&events).next().unwrap(),
&TestEvent { i: 1 }
);
assert!(read_cursor.read(&events).next().is_none());
events.send(TestEvent { i: 2 });
let sent_event = write_cursor.read_mut(&mut events).next().unwrap();
assert_eq!(sent_event, &mut TestEvent { i: 2 });
sent_event.i = 3; // Mutate sub value
assert_eq!(
read_cursor.read(&events).next().unwrap(),
&TestEvent { i: 3 }
);
assert!(read_cursor.read(&events).next().is_none());
events.clear();
assert!(write_cursor.read(&events).next().is_none());
assert!(read_cursor.read(&events).next().is_none());
}
#[test]
fn test_event_cursor_clear() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_cursor();
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 1);
reader.clear(&events);
assert_eq!(reader.len(&events), 0);
}
#[test]
fn test_event_cursor_len_update() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 0 });
let reader = events.get_cursor();
assert_eq!(reader.len(&events), 2);
events.update();
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 3);
events.update();
assert_eq!(reader.len(&events), 1);
events.update();
assert!(reader.is_empty(&events));
}
#[test]
fn test_event_cursor_len_current() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
let reader = events.get_cursor_current();
assert!(reader.is_empty(&events));
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 1);
assert!(!reader.is_empty(&events));
}
#[test]
fn test_event_cursor_iter_len_updated() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
events.send(TestEvent { i: 2 });
let mut reader = events.get_cursor();
let mut iter = reader.read(&events);
assert_eq!(iter.len(), 3);
iter.next();
assert_eq!(iter.len(), 2);
iter.next();
assert_eq!(iter.len(), 1);
iter.next();
assert_eq!(iter.len(), 0);
}
#[test]
fn test_event_cursor_len_empty() {
let events = Events::<TestEvent>::default();
assert_eq!(events.get_cursor().len(&events), 0);
assert!(events.get_cursor().is_empty(&events));
}
#[test]
fn test_event_cursor_len_filled() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
assert_eq!(events.get_cursor().len(&events), 1);
assert!(!events.get_cursor().is_empty(&events));
}
#[cfg(feature = "multi_threaded")]
#[test]
fn test_event_cursor_par_read() {
use crate::prelude::*;
use core::sync::atomic::{AtomicUsize, Ordering};
#[derive(Resource)]
struct Counter(AtomicUsize);
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
for _ in 0..100 {
world.send_event(TestEvent { i: 1 });
}
let mut schedule = Schedule::default();
schedule.add_systems(
|mut cursor: Local<EventCursor<TestEvent>>,
events: Res<Events<TestEvent>>,
counter: ResMut<Counter>| {
cursor.par_read(&events).for_each(|event| {
counter.0.fetch_add(event.i, Ordering::Relaxed);
});
},
);
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(counter.0.into_inner(), 100);
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(
counter.0.into_inner(),
0,
"par_read should have consumed events but didn't"
);
}
#[cfg(feature = "multi_threaded")]
#[test]
fn test_event_cursor_par_read_mut() {
use crate::prelude::*;
use core::sync::atomic::{AtomicUsize, Ordering};
#[derive(Resource)]
struct Counter(AtomicUsize);
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
for _ in 0..100 {
world.send_event(TestEvent { i: 1 });
}
let mut schedule = Schedule::default();
schedule.add_systems(
|mut cursor: Local<EventCursor<TestEvent>>,
mut events: ResMut<Events<TestEvent>>,
counter: ResMut<Counter>| {
cursor.par_read_mut(&mut events).for_each(|event| {
event.i += 1;
counter.0.fetch_add(event.i, Ordering::Relaxed);
});
},
);
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(counter.0.into_inner(), 200, "Initial run failed");
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(
counter.0.into_inner(),
0,
"par_read_mut should have consumed events but didn't"
);
}
// Reader & Mutator
#[test]
fn ensure_reader_readonly() {
fn reader_system(_: EventReader<EmptyTestEvent>) {}
assert_is_read_only_system(reader_system);
}
#[test]
fn test_event_reader_iter_last() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
let mut reader =
IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> Option<TestEvent> {
events.read().last().copied()
});
reader.initialize(&mut world);
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
world.send_event(TestEvent { i: 0 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 0 }));
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 3 }));
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
}
#[test]
fn test_event_mutator_iter_last() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
let mut mutator =
IntoSystem::into_system(|mut events: EventMutator<TestEvent>| -> Option<TestEvent> {
events.read().last().copied()
});
mutator.initialize(&mut world);
let last = mutator.run((), &mut world);
assert!(last.is_none(), "EventMutator should be empty");
world.send_event(TestEvent { i: 0 });
let last = mutator.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 0 }));
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
let last = mutator.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 3 }));
let last = mutator.run((), &mut world);
assert!(last.is_none(), "EventMutator should be empty");
}
#[test]
fn test_event_reader_iter_nth() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
world.send_event(TestEvent { i: 0 });
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
world.send_event(TestEvent { i: 4 });
let mut schedule = Schedule::default();
schedule.add_systems(|mut events: EventReader<TestEvent>| {
let mut iter = events.read();
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
assert_eq!(iter.nth(1), None);
assert!(events.is_empty());
});
schedule.run(&mut world);
}
#[test]
fn test_event_mutator_iter_nth() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
world.send_event(TestEvent { i: 0 });
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
world.send_event(TestEvent { i: 4 });
let mut schedule = Schedule::default();
schedule.add_systems(|mut events: EventReader<TestEvent>| {
let mut iter = events.read();
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
assert_eq!(iter.nth(1), None);
assert!(events.is_empty());
});
schedule.run(&mut world);
}
}