
# Objective The way `Curve` presently achieves dyn-compatibility involves shoving `Self: Sized` bounds on a bunch of methods to forbid them from appearing in vtables. (This is called *explicit non-dispatchability*.) The `Curve` trait probably also just has way too many methods on its own. In the past, using extension traits instead to achieve similar functionality has been discussed. The upshot is that this would allow the "core" of the curve trait, on which all the automatic methods rely, to live in a very simple dyn-compatible trait, while other functionality is implemented by extensions. For instance, `dyn Curve<T>` cannot use the `Sized` methods, but `Box<dyn Curve<T>>` is `Sized`, hence would automatically implement the extension trait, containing the methods which are currently non-dispatchable. Other motivations for this include modularity and code organization: the `Curve` trait itself has grown quite large with the addition of numerous adaptors, and refactoring it to demonstrate the separation of functionality that is already present makes a lot of sense. Furthermore, resampling behavior in particular is dependent on special traits that may be mimicked or analogized in user-space, and creating extension traits to achieve similar behavior in user-space is something we ought to encourage by example. ## Solution `Curve` now contains only `domain` and the `sample` methods. `CurveExt` has been created, and it contains all adaptors, along with the other sampling convenience methods (`samples`, `sample_iter`, etc.). It is implemented for all `C` where `C: Curve<T> + Sized`. `CurveResampleExt` has been created, and it contains all resampling methods. It is implemented for all `C` where `C: Curve<T> + ?Sized`. ## Testing It compiles and `cargo doc` succeeds. --- ## Future work - Consider writing extension traits for resampling curves in related domains (e.g. resampling for `Curve<T>` where `T: Animatable` into an `AnimatableKeyframeCurve`). - `CurveExt` might be further broken down to separate the adaptor and sampling methods. --- ## Migration Guide `Curve` has been refactored so that much of its functionality is now in extension traits. Adaptors such as `map`, `reparametrize`, `reverse`, and so on now require importing `CurveExt`, while the resampling methods `resample_*` require importing `CurveResampleExt`. Both of these new traits are exported through `bevy::math::curve` and through `bevy::math::prelude`.
404 lines
13 KiB
Rust
404 lines
13 KiB
Rust
//! Sample-interpolated curves constructed using the [`Curve`] API.
|
|
|
|
use super::cores::{EvenCore, EvenCoreError, UnevenCore, UnevenCoreError};
|
|
use super::{Curve, Interval};
|
|
|
|
use crate::StableInterpolate;
|
|
use core::any::type_name;
|
|
use core::fmt::{self, Debug};
|
|
|
|
#[cfg(feature = "bevy_reflect")]
|
|
use bevy_reflect::{utility::GenericTypePathCell, Reflect, TypePath};
|
|
|
|
#[cfg(feature = "bevy_reflect")]
|
|
mod paths {
|
|
pub(super) const THIS_MODULE: &str = "bevy_math::curve::sample_curves";
|
|
pub(super) const THIS_CRATE: &str = "bevy_math";
|
|
}
|
|
|
|
/// A curve that is defined by explicit neighbor interpolation over a set of evenly-spaced samples.
|
|
#[derive(Clone)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(where T: TypePath),
|
|
reflect(from_reflect = false, type_path = false),
|
|
)]
|
|
pub struct SampleCurve<T, I> {
|
|
pub(crate) core: EvenCore<T>,
|
|
#[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
|
|
pub(crate) interpolation: I,
|
|
}
|
|
|
|
impl<T, I> Debug for SampleCurve<T, I>
|
|
where
|
|
EvenCore<T>: Debug,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.debug_struct("SampleCurve")
|
|
.field("core", &self.core)
|
|
.field("interpolation", &type_name::<I>())
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
/// Note: This is not a fully stable implementation of `TypePath` due to usage of `type_name`
|
|
/// for function members.
|
|
#[cfg(feature = "bevy_reflect")]
|
|
impl<T, I> TypePath for SampleCurve<T, I>
|
|
where
|
|
T: TypePath,
|
|
I: 'static,
|
|
{
|
|
fn type_path() -> &'static str {
|
|
static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
CELL.get_or_insert::<Self, _>(|| {
|
|
format!(
|
|
"{}::SampleCurve<{},{}>",
|
|
paths::THIS_MODULE,
|
|
T::type_path(),
|
|
type_name::<I>()
|
|
)
|
|
})
|
|
}
|
|
|
|
fn short_type_path() -> &'static str {
|
|
static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
CELL.get_or_insert::<Self, _>(|| {
|
|
format!("SampleCurve<{},{}>", T::type_path(), type_name::<I>())
|
|
})
|
|
}
|
|
|
|
fn type_ident() -> Option<&'static str> {
|
|
Some("SampleCurve")
|
|
}
|
|
|
|
fn crate_name() -> Option<&'static str> {
|
|
Some(paths::THIS_CRATE)
|
|
}
|
|
|
|
fn module_path() -> Option<&'static str> {
|
|
Some(paths::THIS_MODULE)
|
|
}
|
|
}
|
|
|
|
impl<T, I> Curve<T> for SampleCurve<T, I>
|
|
where
|
|
T: Clone,
|
|
I: Fn(&T, &T, f32) -> T,
|
|
{
|
|
#[inline]
|
|
fn domain(&self) -> Interval {
|
|
self.core.domain()
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_clamped(&self, t: f32) -> T {
|
|
// `EvenCore::sample_with` is implicitly clamped.
|
|
self.core.sample_with(t, &self.interpolation)
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_unchecked(&self, t: f32) -> T {
|
|
self.sample_clamped(t)
|
|
}
|
|
}
|
|
|
|
impl<T, I> SampleCurve<T, I> {
|
|
/// Create a new [`SampleCurve`] using the specified `interpolation` to interpolate between
|
|
/// the given `samples`. An error is returned if there are not at least 2 samples or if the
|
|
/// given `domain` is unbounded.
|
|
///
|
|
/// The interpolation takes two values by reference together with a scalar parameter and
|
|
/// produces an owned value. The expectation is that `interpolation(&x, &y, 0.0)` and
|
|
/// `interpolation(&x, &y, 1.0)` are equivalent to `x` and `y` respectively.
|
|
pub fn new(
|
|
domain: Interval,
|
|
samples: impl IntoIterator<Item = T>,
|
|
interpolation: I,
|
|
) -> Result<Self, EvenCoreError>
|
|
where
|
|
I: Fn(&T, &T, f32) -> T,
|
|
{
|
|
Ok(Self {
|
|
core: EvenCore::new(domain, samples)?,
|
|
interpolation,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A curve that is defined by neighbor interpolation over a set of evenly-spaced samples,
|
|
/// interpolated automatically using [a particularly well-behaved interpolation].
|
|
///
|
|
/// [a particularly well-behaved interpolation]: StableInterpolate
|
|
#[derive(Clone, Debug)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
|
|
pub struct SampleAutoCurve<T> {
|
|
pub(crate) core: EvenCore<T>,
|
|
}
|
|
|
|
impl<T> Curve<T> for SampleAutoCurve<T>
|
|
where
|
|
T: StableInterpolate,
|
|
{
|
|
#[inline]
|
|
fn domain(&self) -> Interval {
|
|
self.core.domain()
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_clamped(&self, t: f32) -> T {
|
|
// `EvenCore::sample_with` is implicitly clamped.
|
|
self.core
|
|
.sample_with(t, <T as StableInterpolate>::interpolate_stable)
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_unchecked(&self, t: f32) -> T {
|
|
self.sample_clamped(t)
|
|
}
|
|
}
|
|
|
|
impl<T> SampleAutoCurve<T> {
|
|
/// Create a new [`SampleCurve`] using type-inferred interpolation to interpolate between
|
|
/// the given `samples`. An error is returned if there are not at least 2 samples or if the
|
|
/// given `domain` is unbounded.
|
|
pub fn new(
|
|
domain: Interval,
|
|
samples: impl IntoIterator<Item = T>,
|
|
) -> Result<Self, EvenCoreError> {
|
|
Ok(Self {
|
|
core: EvenCore::new(domain, samples)?,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A curve that is defined by interpolation over unevenly spaced samples with explicit
|
|
/// interpolation.
|
|
#[derive(Clone)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(where T: TypePath),
|
|
reflect(from_reflect = false, type_path = false),
|
|
)]
|
|
pub struct UnevenSampleCurve<T, I> {
|
|
pub(crate) core: UnevenCore<T>,
|
|
#[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
|
|
pub(crate) interpolation: I,
|
|
}
|
|
|
|
impl<T, I> Debug for UnevenSampleCurve<T, I>
|
|
where
|
|
UnevenCore<T>: Debug,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.debug_struct("SampleCurve")
|
|
.field("core", &self.core)
|
|
.field("interpolation", &type_name::<I>())
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
/// Note: This is not a fully stable implementation of `TypePath` due to usage of `type_name`
|
|
/// for function members.
|
|
#[cfg(feature = "bevy_reflect")]
|
|
impl<T, I> TypePath for UnevenSampleCurve<T, I>
|
|
where
|
|
T: TypePath,
|
|
I: 'static,
|
|
{
|
|
fn type_path() -> &'static str {
|
|
static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
CELL.get_or_insert::<Self, _>(|| {
|
|
format!(
|
|
"{}::UnevenSampleCurve<{},{}>",
|
|
paths::THIS_MODULE,
|
|
T::type_path(),
|
|
type_name::<I>()
|
|
)
|
|
})
|
|
}
|
|
|
|
fn short_type_path() -> &'static str {
|
|
static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
CELL.get_or_insert::<Self, _>(|| {
|
|
format!("UnevenSampleCurve<{},{}>", T::type_path(), type_name::<I>())
|
|
})
|
|
}
|
|
|
|
fn type_ident() -> Option<&'static str> {
|
|
Some("UnevenSampleCurve")
|
|
}
|
|
|
|
fn crate_name() -> Option<&'static str> {
|
|
Some(paths::THIS_CRATE)
|
|
}
|
|
|
|
fn module_path() -> Option<&'static str> {
|
|
Some(paths::THIS_MODULE)
|
|
}
|
|
}
|
|
|
|
impl<T, I> Curve<T> for UnevenSampleCurve<T, I>
|
|
where
|
|
T: Clone,
|
|
I: Fn(&T, &T, f32) -> T,
|
|
{
|
|
#[inline]
|
|
fn domain(&self) -> Interval {
|
|
self.core.domain()
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_clamped(&self, t: f32) -> T {
|
|
// `UnevenCore::sample_with` is implicitly clamped.
|
|
self.core.sample_with(t, &self.interpolation)
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_unchecked(&self, t: f32) -> T {
|
|
self.sample_clamped(t)
|
|
}
|
|
}
|
|
|
|
impl<T, I> UnevenSampleCurve<T, I> {
|
|
/// Create a new [`UnevenSampleCurve`] using the provided `interpolation` to interpolate
|
|
/// between adjacent `timed_samples`. The given samples are filtered to finite times and
|
|
/// sorted internally; if there are not at least 2 valid timed samples, an error will be
|
|
/// returned.
|
|
///
|
|
/// The interpolation takes two values by reference together with a scalar parameter and
|
|
/// produces an owned value. The expectation is that `interpolation(&x, &y, 0.0)` and
|
|
/// `interpolation(&x, &y, 1.0)` are equivalent to `x` and `y` respectively.
|
|
pub fn new(
|
|
timed_samples: impl IntoIterator<Item = (f32, T)>,
|
|
interpolation: I,
|
|
) -> Result<Self, UnevenCoreError> {
|
|
Ok(Self {
|
|
core: UnevenCore::new(timed_samples)?,
|
|
interpolation,
|
|
})
|
|
}
|
|
|
|
/// This [`UnevenSampleAutoCurve`], but with the sample times moved by the map `f`.
|
|
/// In principle, when `f` is monotone, this is equivalent to [`CurveExt::reparametrize`],
|
|
/// but the function inputs to each are inverses of one another.
|
|
///
|
|
/// The samples are re-sorted by time after mapping and deduplicated by output time, so
|
|
/// the function `f` should generally be injective over the sample times of the curve.
|
|
///
|
|
/// [`CurveExt::reparametrize`]: super::CurveExt::reparametrize
|
|
pub fn map_sample_times(self, f: impl Fn(f32) -> f32) -> UnevenSampleCurve<T, I> {
|
|
Self {
|
|
core: self.core.map_sample_times(f),
|
|
interpolation: self.interpolation,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A curve that is defined by interpolation over unevenly spaced samples,
|
|
/// interpolated automatically using [a particularly well-behaved interpolation].
|
|
///
|
|
/// [a particularly well-behaved interpolation]: StableInterpolate
|
|
#[derive(Clone, Debug)]
|
|
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
|
|
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
|
|
pub struct UnevenSampleAutoCurve<T> {
|
|
pub(crate) core: UnevenCore<T>,
|
|
}
|
|
|
|
impl<T> Curve<T> for UnevenSampleAutoCurve<T>
|
|
where
|
|
T: StableInterpolate,
|
|
{
|
|
#[inline]
|
|
fn domain(&self) -> Interval {
|
|
self.core.domain()
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_clamped(&self, t: f32) -> T {
|
|
// `UnevenCore::sample_with` is implicitly clamped.
|
|
self.core
|
|
.sample_with(t, <T as StableInterpolate>::interpolate_stable)
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_unchecked(&self, t: f32) -> T {
|
|
self.sample_clamped(t)
|
|
}
|
|
}
|
|
|
|
impl<T> UnevenSampleAutoCurve<T> {
|
|
/// Create a new [`UnevenSampleAutoCurve`] from a given set of timed samples.
|
|
///
|
|
/// The samples are filtered to finite times and sorted internally; if there are not
|
|
/// at least 2 valid timed samples, an error will be returned.
|
|
pub fn new(timed_samples: impl IntoIterator<Item = (f32, T)>) -> Result<Self, UnevenCoreError> {
|
|
Ok(Self {
|
|
core: UnevenCore::new(timed_samples)?,
|
|
})
|
|
}
|
|
|
|
/// This [`UnevenSampleAutoCurve`], but with the sample times moved by the map `f`.
|
|
/// In principle, when `f` is monotone, this is equivalent to [`CurveExt::reparametrize`],
|
|
/// but the function inputs to each are inverses of one another.
|
|
///
|
|
/// The samples are re-sorted by time after mapping and deduplicated by output time, so
|
|
/// the function `f` should generally be injective over the sample times of the curve.
|
|
///
|
|
/// [`CurveExt::reparametrize`]: super::CurveExt::reparametrize
|
|
pub fn map_sample_times(self, f: impl Fn(f32) -> f32) -> UnevenSampleAutoCurve<T> {
|
|
Self {
|
|
core: self.core.map_sample_times(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
#[cfg(feature = "bevy_reflect")]
|
|
mod tests {
|
|
//! These tests should guarantee (by even compiling) that `SampleCurve` and `UnevenSampleCurve`
|
|
//! can be `Reflect` under reasonable circumstances where their interpolation is defined by:
|
|
//! - function items
|
|
//! - 'static closures
|
|
//! - function pointers
|
|
use super::{SampleCurve, UnevenSampleCurve};
|
|
use crate::{curve::Interval, VectorSpace};
|
|
use bevy_reflect::Reflect;
|
|
|
|
#[test]
|
|
fn reflect_sample_curve() {
|
|
fn foo(x: &f32, y: &f32, t: f32) -> f32 {
|
|
x.lerp(*y, t)
|
|
}
|
|
let bar = |x: &f32, y: &f32, t: f32| x.lerp(*y, t);
|
|
let baz: fn(&f32, &f32, f32) -> f32 = bar;
|
|
|
|
let samples = [0.0, 1.0, 2.0];
|
|
|
|
let _: Box<dyn Reflect> = Box::new(SampleCurve::new(Interval::UNIT, samples, foo).unwrap());
|
|
let _: Box<dyn Reflect> = Box::new(SampleCurve::new(Interval::UNIT, samples, bar).unwrap());
|
|
let _: Box<dyn Reflect> = Box::new(SampleCurve::new(Interval::UNIT, samples, baz).unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn reflect_uneven_sample_curve() {
|
|
fn foo(x: &f32, y: &f32, t: f32) -> f32 {
|
|
x.lerp(*y, t)
|
|
}
|
|
let bar = |x: &f32, y: &f32, t: f32| x.lerp(*y, t);
|
|
let baz: fn(&f32, &f32, f32) -> f32 = bar;
|
|
|
|
let keyframes = [(0.0, 1.0), (1.0, 0.0), (2.0, -1.0)];
|
|
|
|
let _: Box<dyn Reflect> = Box::new(UnevenSampleCurve::new(keyframes, foo).unwrap());
|
|
let _: Box<dyn Reflect> = Box::new(UnevenSampleCurve::new(keyframes, bar).unwrap());
|
|
let _: Box<dyn Reflect> = Box::new(UnevenSampleCurve::new(keyframes, baz).unwrap());
|
|
}
|
|
}
|