bevy/crates/bevy_ui/src/render/ui_material_pipeline.rs
Sludge 989f547080
Weak handle migration (#17695)
# Objective

- Make use of the new `weak_handle!` macro added in
https://github.com/bevyengine/bevy/pull/17384

## Solution

- Migrate bevy from `Handle::weak_from_u128` to the new `weak_handle!`
macro that takes a random UUID
- Deprecate `Handle::weak_from_u128`, since there are no remaining use
cases that can't also be addressed by constructing the type manually

## Testing

- `cargo run -p ci -- test`

---

## Migration Guide

Replace `Handle::weak_from_u128` with `weak_handle!` and a random UUID.
2025-02-05 22:44:20 +00:00

679 lines
24 KiB
Rust

use core::{hash::Hash, marker::PhantomData, ops::Range};
use crate::*;
use bevy_asset::*;
use bevy_ecs::{
prelude::Component,
query::ROQueryItem,
system::{
lifetimeless::{Read, SRes},
*,
},
};
use bevy_image::BevyDefault as _;
use bevy_math::{FloatOrd, Mat4, Rect, Vec2, Vec4Swizzles};
use bevy_render::sync_world::{MainEntity, TemporaryRenderEntity};
use bevy_render::{
extract_component::ExtractComponentPlugin,
globals::{GlobalsBuffer, GlobalsUniform},
render_asset::{PrepareAssetError, RenderAsset, RenderAssetPlugin, RenderAssets},
render_phase::*,
render_resource::{binding_types::uniform_buffer, *},
renderer::{RenderDevice, RenderQueue},
view::*,
Extract, ExtractSchedule, Render, RenderSet,
};
use bevy_sprite::BorderRect;
use bevy_transform::prelude::GlobalTransform;
use bytemuck::{Pod, Zeroable};
pub const UI_MATERIAL_SHADER_HANDLE: Handle<Shader> =
weak_handle!("b5612b7b-aed5-41b4-a930-1d1588239fcd");
const UI_VERTEX_OUTPUT_SHADER_HANDLE: Handle<Shader> =
weak_handle!("1d97ca3e-eaa8-4bc5-a676-e8e9568c472e");
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given
/// [`UiMaterial`] asset type (which includes [`UiMaterial`] types).
pub struct UiMaterialPlugin<M: UiMaterial>(PhantomData<M>);
impl<M: UiMaterial> Default for UiMaterialPlugin<M> {
fn default() -> Self {
Self(Default::default())
}
}
impl<M: UiMaterial> Plugin for UiMaterialPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
load_internal_asset!(
app,
UI_VERTEX_OUTPUT_SHADER_HANDLE,
"ui_vertex_output.wgsl",
Shader::from_wgsl
);
load_internal_asset!(
app,
UI_MATERIAL_SHADER_HANDLE,
"ui_material.wgsl",
Shader::from_wgsl
);
app.init_asset::<M>()
.register_type::<MaterialNode<M>>()
.add_plugins((
ExtractComponentPlugin::<MaterialNode<M>>::extract_visible(),
RenderAssetPlugin::<PreparedUiMaterial<M>>::default(),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<TransparentUi, DrawUiMaterial<M>>()
.init_resource::<ExtractedUiMaterialNodes<M>>()
.init_resource::<UiMaterialMeta<M>>()
.init_resource::<SpecializedRenderPipelines<UiMaterialPipeline<M>>>()
.add_systems(
ExtractSchedule,
extract_ui_material_nodes::<M>.in_set(RenderUiSystem::ExtractBackgrounds),
)
.add_systems(
Render,
(
queue_ui_material_nodes::<M>.in_set(RenderSet::Queue),
prepare_uimaterial_nodes::<M>.in_set(RenderSet::PrepareBindGroups),
),
);
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<UiMaterialPipeline<M>>();
}
}
}
#[derive(Resource)]
pub struct UiMaterialMeta<M: UiMaterial> {
vertices: RawBufferVec<UiMaterialVertex>,
view_bind_group: Option<BindGroup>,
marker: PhantomData<M>,
}
impl<M: UiMaterial> Default for UiMaterialMeta<M> {
fn default() -> Self {
Self {
vertices: RawBufferVec::new(BufferUsages::VERTEX),
view_bind_group: Default::default(),
marker: PhantomData,
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
pub struct UiMaterialVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
pub size: [f32; 2],
pub border: [f32; 4],
pub radius: [f32; 4],
}
// in this [`UiMaterialPipeline`] there is (currently) no batching going on.
// Therefore the [`UiMaterialBatch`] is more akin to a draw call.
#[derive(Component)]
pub struct UiMaterialBatch<M: UiMaterial> {
/// The range of vertices inside the [`UiMaterialMeta`]
pub range: Range<u32>,
pub material: AssetId<M>,
}
/// Render pipeline data for a given [`UiMaterial`]
#[derive(Resource)]
pub struct UiMaterialPipeline<M: UiMaterial> {
pub ui_layout: BindGroupLayout,
pub view_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
marker: PhantomData<M>,
}
impl<M: UiMaterial> SpecializedRenderPipeline for UiMaterialPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = UiMaterialKey<M>;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let vertex_layout = VertexBufferLayout::from_vertex_formats(
VertexStepMode::Vertex,
vec![
// position
VertexFormat::Float32x3,
// uv
VertexFormat::Float32x2,
// size
VertexFormat::Float32x2,
// border widths
VertexFormat::Float32x4,
// border radius
VertexFormat::Float32x4,
],
);
let shader_defs = Vec::new();
let mut descriptor = RenderPipelineDescriptor {
vertex: VertexState {
shader: UI_MATERIAL_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_layout],
},
fragment: Some(FragmentState {
shader: UI_MATERIAL_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format: if key.hdr {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
},
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![],
push_constant_ranges: Vec::new(),
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
depth_stencil: None,
multisample: MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("ui_material_pipeline".into()),
zero_initialize_workgroup_memory: false,
};
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout = vec![self.view_layout.clone(), self.ui_layout.clone()];
M::specialize(&mut descriptor, key);
descriptor
}
}
impl<M: UiMaterial> FromWorld for UiMaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
let ui_layout = M::bind_group_layout(render_device);
let view_layout = render_device.create_bind_group_layout(
"ui_view_layout",
&BindGroupLayoutEntries::sequential(
ShaderStages::VERTEX_FRAGMENT,
(
uniform_buffer::<ViewUniform>(true),
uniform_buffer::<GlobalsUniform>(false),
),
),
);
UiMaterialPipeline {
ui_layout,
view_layout,
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
marker: PhantomData,
}
}
}
pub type DrawUiMaterial<M> = (
SetItemPipeline,
SetMatUiViewBindGroup<M, 0>,
SetUiMaterialBindGroup<M, 1>,
DrawUiMaterialNode<M>,
);
pub struct SetMatUiViewBindGroup<M: UiMaterial, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: UiMaterial, const I: usize> RenderCommand<P> for SetMatUiViewBindGroup<M, I> {
type Param = SRes<UiMaterialMeta<M>>;
type ViewQuery = Read<ViewUniformOffset>;
type ItemQuery = ();
fn render<'w>(
_item: &P,
view_uniform: &'w ViewUniformOffset,
_entity: Option<()>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
ui_meta.into_inner().view_bind_group.as_ref().unwrap(),
&[view_uniform.offset],
);
RenderCommandResult::Success
}
}
pub struct SetUiMaterialBindGroup<M: UiMaterial, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: UiMaterial, const I: usize> RenderCommand<P>
for SetUiMaterialBindGroup<M, I>
{
type Param = SRes<RenderAssets<PreparedUiMaterial<M>>>;
type ViewQuery = ();
type ItemQuery = Read<UiMaterialBatch<M>>;
fn render<'w>(
_item: &P,
_view: (),
material_handle: Option<ROQueryItem<'_, Self::ItemQuery>>,
materials: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(material_handle) = material_handle else {
return RenderCommandResult::Skip;
};
let Some(material) = materials.into_inner().get(material_handle.material) else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(I, &material.bind_group, &[]);
RenderCommandResult::Success
}
}
pub struct DrawUiMaterialNode<M>(PhantomData<M>);
impl<P: PhaseItem, M: UiMaterial> RenderCommand<P> for DrawUiMaterialNode<M> {
type Param = SRes<UiMaterialMeta<M>>;
type ViewQuery = ();
type ItemQuery = Read<UiMaterialBatch<M>>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'w UiMaterialBatch<M>>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
pass.set_vertex_buffer(0, ui_meta.into_inner().vertices.buffer().unwrap().slice(..));
pass.draw(batch.range.clone(), 0..1);
RenderCommandResult::Success
}
}
pub struct ExtractedUiMaterialNode<M: UiMaterial> {
pub stack_index: u32,
pub transform: Mat4,
pub rect: Rect,
pub border: BorderRect,
pub border_radius: ResolvedBorderRadius,
pub material: AssetId<M>,
pub clip: Option<Rect>,
// Camera to render this UI node to. By the time it is extracted,
// it is defaulted to a single camera if only one exists.
// Nodes with ambiguous camera will be ignored.
pub extracted_camera_entity: Entity,
pub main_entity: MainEntity,
render_entity: Entity,
}
#[derive(Resource)]
pub struct ExtractedUiMaterialNodes<M: UiMaterial> {
pub uinodes: Vec<ExtractedUiMaterialNode<M>>,
}
impl<M: UiMaterial> Default for ExtractedUiMaterialNodes<M> {
fn default() -> Self {
Self {
uinodes: Default::default(),
}
}
}
pub fn extract_ui_material_nodes<M: UiMaterial>(
mut commands: Commands,
mut extracted_uinodes: ResMut<ExtractedUiMaterialNodes<M>>,
materials: Extract<Res<Assets<M>>>,
uinode_query: Extract<
Query<(
Entity,
&ComputedNode,
&GlobalTransform,
&MaterialNode<M>,
&InheritedVisibility,
Option<&CalculatedClip>,
Option<&UiTargetCamera>,
)>,
>,
camera_map: Extract<UiCameraMap>,
) {
let mut camera_mapper = camera_map.get_mapper();
for (entity, computed_node, transform, handle, inherited_visibility, clip, camera) in
uinode_query.iter()
{
// skip invisible nodes
if !inherited_visibility.get() || computed_node.is_empty() {
continue;
}
// Skip loading materials
if !materials.contains(handle) {
continue;
}
let Some(extracted_camera_entity) = camera_mapper.map(camera) else {
continue;
};
extracted_uinodes.uinodes.push(ExtractedUiMaterialNode {
render_entity: commands.spawn(TemporaryRenderEntity).id(),
stack_index: computed_node.stack_index,
transform: transform.compute_matrix(),
material: handle.id(),
rect: Rect {
min: Vec2::ZERO,
max: computed_node.size(),
},
border: computed_node.border(),
border_radius: computed_node.border_radius(),
clip: clip.map(|clip| clip.clip),
extracted_camera_entity,
main_entity: entity.into(),
});
}
}
pub fn prepare_uimaterial_nodes<M: UiMaterial>(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut ui_meta: ResMut<UiMaterialMeta<M>>,
mut extracted_uinodes: ResMut<ExtractedUiMaterialNodes<M>>,
view_uniforms: Res<ViewUniforms>,
globals_buffer: Res<GlobalsBuffer>,
ui_material_pipeline: Res<UiMaterialPipeline<M>>,
mut phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut previous_len: Local<usize>,
) {
if let (Some(view_binding), Some(globals_binding)) = (
view_uniforms.uniforms.binding(),
globals_buffer.buffer.binding(),
) {
let mut batches: Vec<(Entity, UiMaterialBatch<M>)> = Vec::with_capacity(*previous_len);
ui_meta.vertices.clear();
ui_meta.view_bind_group = Some(render_device.create_bind_group(
"ui_material_view_bind_group",
&ui_material_pipeline.view_layout,
&BindGroupEntries::sequential((view_binding, globals_binding)),
));
let mut index = 0;
for ui_phase in phases.values_mut() {
let mut batch_item_index = 0;
let mut batch_shader_handle = AssetId::invalid();
for item_index in 0..ui_phase.items.len() {
let item = &mut ui_phase.items[item_index];
if let Some(extracted_uinode) = extracted_uinodes
.uinodes
.get(item.index)
.filter(|n| item.entity() == n.render_entity)
{
let mut existing_batch = batches
.last_mut()
.filter(|_| batch_shader_handle == extracted_uinode.material);
if existing_batch.is_none() {
batch_item_index = item_index;
batch_shader_handle = extracted_uinode.material;
let new_batch = UiMaterialBatch {
range: index..index,
material: extracted_uinode.material,
};
batches.push((item.entity(), new_batch));
existing_batch = batches.last_mut();
}
let uinode_rect = extracted_uinode.rect;
let rect_size = uinode_rect.size().extend(1.0);
let positions = QUAD_VERTEX_POSITIONS.map(|pos| {
(extracted_uinode.transform * (pos * rect_size).extend(1.0)).xyz()
});
let positions_diff = if let Some(clip) = extracted_uinode.clip {
[
Vec2::new(
f32::max(clip.min.x - positions[0].x, 0.),
f32::max(clip.min.y - positions[0].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[1].x, 0.),
f32::max(clip.min.y - positions[1].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[2].x, 0.),
f32::min(clip.max.y - positions[2].y, 0.),
),
Vec2::new(
f32::max(clip.min.x - positions[3].x, 0.),
f32::min(clip.max.y - positions[3].y, 0.),
),
]
} else {
[Vec2::ZERO; 4]
};
let positions_clipped = [
positions[0] + positions_diff[0].extend(0.),
positions[1] + positions_diff[1].extend(0.),
positions[2] + positions_diff[2].extend(0.),
positions[3] + positions_diff[3].extend(0.),
];
let transformed_rect_size =
extracted_uinode.transform.transform_vector3(rect_size);
// Don't try to cull nodes that have a rotation
// In a rotation around the Z-axis, this value is 0.0 for an angle of 0.0 or π
// In those two cases, the culling check can proceed normally as corners will be on
// horizontal / vertical lines
// For all other angles, bypass the culling check
// This does not properly handles all rotations on all axis
if extracted_uinode.transform.x_axis[1] == 0.0 {
// Cull nodes that are completely clipped
if positions_diff[0].x - positions_diff[1].x >= transformed_rect_size.x
|| positions_diff[1].y - positions_diff[2].y >= transformed_rect_size.y
{
continue;
}
}
let uvs = [
Vec2::new(
uinode_rect.min.x + positions_diff[0].x,
uinode_rect.min.y + positions_diff[0].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[1].x,
uinode_rect.min.y + positions_diff[1].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[2].x,
uinode_rect.max.y + positions_diff[2].y,
),
Vec2::new(
uinode_rect.min.x + positions_diff[3].x,
uinode_rect.max.y + positions_diff[3].y,
),
]
.map(|pos| pos / uinode_rect.max);
for i in QUAD_INDICES {
ui_meta.vertices.push(UiMaterialVertex {
position: positions_clipped[i].into(),
uv: uvs[i].into(),
size: extracted_uinode.rect.size().into(),
radius: [
extracted_uinode.border_radius.top_left,
extracted_uinode.border_radius.top_right,
extracted_uinode.border_radius.bottom_right,
extracted_uinode.border_radius.bottom_left,
],
border: [
extracted_uinode.border.left,
extracted_uinode.border.top,
extracted_uinode.border.right,
extracted_uinode.border.bottom,
],
});
}
index += QUAD_INDICES.len() as u32;
existing_batch.unwrap().1.range.end = index;
ui_phase.items[batch_item_index].batch_range_mut().end += 1;
} else {
batch_shader_handle = AssetId::invalid();
}
}
}
ui_meta.vertices.write_buffer(&render_device, &render_queue);
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
extracted_uinodes.uinodes.clear();
}
pub struct PreparedUiMaterial<T: UiMaterial> {
pub bindings: BindingResources,
pub bind_group: BindGroup,
pub key: T::Data,
}
impl<M: UiMaterial> RenderAsset for PreparedUiMaterial<M> {
type SourceAsset = M;
type Param = (SRes<RenderDevice>, SRes<UiMaterialPipeline<M>>, M::Param);
fn prepare_asset(
material: Self::SourceAsset,
_: AssetId<Self::SourceAsset>,
(render_device, pipeline, ref mut material_param): &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>> {
match material.as_bind_group(&pipeline.ui_layout, render_device, material_param) {
Ok(prepared) => Ok(PreparedUiMaterial {
bindings: prepared.bindings,
bind_group: prepared.bind_group,
key: prepared.data,
}),
Err(AsBindGroupError::RetryNextUpdate) => {
Err(PrepareAssetError::RetryNextUpdate(material))
}
Err(other) => Err(PrepareAssetError::AsBindGroupError(other)),
}
}
}
pub fn queue_ui_material_nodes<M: UiMaterial>(
extracted_uinodes: Res<ExtractedUiMaterialNodes<M>>,
draw_functions: Res<DrawFunctions<TransparentUi>>,
ui_material_pipeline: Res<UiMaterialPipeline<M>>,
mut pipelines: ResMut<SpecializedRenderPipelines<UiMaterialPipeline<M>>>,
pipeline_cache: Res<PipelineCache>,
render_materials: Res<RenderAssets<PreparedUiMaterial<M>>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut render_views: Query<&UiCameraView, With<ExtractedView>>,
camera_views: Query<&ExtractedView>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
let draw_function = draw_functions.read().id::<DrawUiMaterial<M>>();
for (index, extracted_uinode) in extracted_uinodes.uinodes.iter().enumerate() {
let Some(material) = render_materials.get(extracted_uinode.material) else {
continue;
};
let Ok(default_camera_view) =
render_views.get_mut(extracted_uinode.extracted_camera_entity)
else {
continue;
};
let Ok(view) = camera_views.get(default_camera_view.0) else {
continue;
};
let Some(transparent_phase) = transparent_render_phases.get_mut(&view.retained_view_entity)
else {
continue;
};
let pipeline = pipelines.specialize(
&pipeline_cache,
&ui_material_pipeline,
UiMaterialKey {
hdr: view.hdr,
bind_group_data: material.key.clone(),
},
);
if transparent_phase.items.capacity() < extracted_uinodes.uinodes.len() {
transparent_phase.items.reserve_exact(
extracted_uinodes.uinodes.len() - transparent_phase.items.capacity(),
);
}
transparent_phase.add(TransparentUi {
draw_function,
pipeline,
entity: (extracted_uinode.render_entity, extracted_uinode.main_entity),
sort_key: (
FloatOrd(extracted_uinode.stack_index as f32 + stack_z_offsets::MATERIAL),
extracted_uinode.render_entity.index(),
),
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::None,
index,
indexed: false,
});
}
}