
*This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
216 lines
7.7 KiB
Rust
216 lines
7.7 KiB
Rust
use crate::{Extract, RenderApp, RenderStage};
|
|
use bevy_app::{App, Plugin};
|
|
use bevy_asset::{Asset, AssetEvent, Assets, Handle};
|
|
use bevy_derive::{Deref, DerefMut};
|
|
use bevy_ecs::{
|
|
prelude::*,
|
|
system::{StaticSystemParam, SystemParam, SystemParamItem},
|
|
};
|
|
use bevy_utils::{HashMap, HashSet};
|
|
use std::marker::PhantomData;
|
|
|
|
pub enum PrepareAssetError<E: Send + Sync + 'static> {
|
|
RetryNextUpdate(E),
|
|
}
|
|
|
|
/// Describes how an asset gets extracted and prepared for rendering.
|
|
///
|
|
/// In the [`RenderStage::Extract`](crate::RenderStage::Extract) step the asset is transferred
|
|
/// from the "app world" into the "render world".
|
|
/// Therefore it is converted into a [`RenderAsset::ExtractedAsset`], which may be the same type
|
|
/// as the render asset itself.
|
|
///
|
|
/// After that in the [`RenderStage::Prepare`](crate::RenderStage::Prepare) step the extracted asset
|
|
/// is transformed into its GPU-representation of type [`RenderAsset::PreparedAsset`].
|
|
pub trait RenderAsset: Asset {
|
|
/// The representation of the asset in the "render world".
|
|
type ExtractedAsset: Send + Sync + 'static;
|
|
/// The GPU-representation of the asset.
|
|
type PreparedAsset: Send + Sync + 'static;
|
|
/// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
|
|
/// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
|
|
type Param: SystemParam;
|
|
/// Converts the asset into a [`RenderAsset::ExtractedAsset`].
|
|
fn extract_asset(&self) -> Self::ExtractedAsset;
|
|
/// Prepares the `extracted asset` for the GPU by transforming it into
|
|
/// a [`RenderAsset::PreparedAsset`]. Therefore ECS data may be accessed via the `param`.
|
|
fn prepare_asset(
|
|
extracted_asset: Self::ExtractedAsset,
|
|
param: &mut SystemParamItem<Self::Param>,
|
|
) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>>;
|
|
}
|
|
|
|
#[derive(Clone, Hash, Debug, Default, PartialEq, Eq, SystemLabel)]
|
|
pub enum PrepareAssetLabel {
|
|
PreAssetPrepare,
|
|
#[default]
|
|
AssetPrepare,
|
|
PostAssetPrepare,
|
|
}
|
|
|
|
/// This plugin extracts the changed assets from the "app world" into the "render world"
|
|
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
|
|
///
|
|
/// Therefore it sets up the [`RenderStage::Extract`](crate::RenderStage::Extract) and
|
|
/// [`RenderStage::Prepare`](crate::RenderStage::Prepare) steps for the specified [`RenderAsset`].
|
|
pub struct RenderAssetPlugin<A: RenderAsset> {
|
|
prepare_asset_label: PrepareAssetLabel,
|
|
phantom: PhantomData<fn() -> A>,
|
|
}
|
|
|
|
impl<A: RenderAsset> RenderAssetPlugin<A> {
|
|
pub fn with_prepare_asset_label(prepare_asset_label: PrepareAssetLabel) -> Self {
|
|
Self {
|
|
prepare_asset_label,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A: RenderAsset> Default for RenderAssetPlugin<A> {
|
|
fn default() -> Self {
|
|
Self {
|
|
prepare_asset_label: Default::default(),
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A: RenderAsset> Plugin for RenderAssetPlugin<A> {
|
|
fn build(&self, app: &mut App) {
|
|
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
|
|
let prepare_asset_system = prepare_assets::<A>.label(self.prepare_asset_label.clone());
|
|
|
|
let prepare_asset_system = match self.prepare_asset_label {
|
|
PrepareAssetLabel::PreAssetPrepare => prepare_asset_system,
|
|
PrepareAssetLabel::AssetPrepare => {
|
|
prepare_asset_system.after(PrepareAssetLabel::PreAssetPrepare)
|
|
}
|
|
PrepareAssetLabel::PostAssetPrepare => {
|
|
prepare_asset_system.after(PrepareAssetLabel::AssetPrepare)
|
|
}
|
|
};
|
|
|
|
render_app
|
|
.init_resource::<ExtractedAssets<A>>()
|
|
.init_resource::<RenderAssets<A>>()
|
|
.init_resource::<PrepareNextFrameAssets<A>>()
|
|
.add_system_to_stage(RenderStage::Extract, extract_render_asset::<A>)
|
|
.add_system_to_stage(RenderStage::Prepare, prepare_asset_system);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Temporarily stores the extracted and removed assets of the current frame.
|
|
#[derive(Resource)]
|
|
pub struct ExtractedAssets<A: RenderAsset> {
|
|
extracted: Vec<(Handle<A>, A::ExtractedAsset)>,
|
|
removed: Vec<Handle<A>>,
|
|
}
|
|
|
|
impl<A: RenderAsset> Default for ExtractedAssets<A> {
|
|
fn default() -> Self {
|
|
Self {
|
|
extracted: Default::default(),
|
|
removed: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Stores all GPU representations ([`RenderAsset::PreparedAssets`](RenderAsset::PreparedAsset))
|
|
/// of [`RenderAssets`](RenderAsset) as long as they exist.
|
|
#[derive(Resource, Deref, DerefMut)]
|
|
pub struct RenderAssets<A: RenderAsset>(HashMap<Handle<A>, A::PreparedAsset>);
|
|
|
|
impl<A: RenderAsset> Default for RenderAssets<A> {
|
|
fn default() -> Self {
|
|
Self(Default::default())
|
|
}
|
|
}
|
|
|
|
/// This system extracts all crated or modified assets of the corresponding [`RenderAsset`] type
|
|
/// into the "render world".
|
|
fn extract_render_asset<A: RenderAsset>(
|
|
mut commands: Commands,
|
|
mut events: Extract<EventReader<AssetEvent<A>>>,
|
|
assets: Extract<Res<Assets<A>>>,
|
|
) {
|
|
let mut changed_assets = HashSet::default();
|
|
let mut removed = Vec::new();
|
|
for event in events.iter() {
|
|
match event {
|
|
AssetEvent::Created { handle } | AssetEvent::Modified { handle } => {
|
|
changed_assets.insert(handle.clone_weak());
|
|
}
|
|
AssetEvent::Removed { handle } => {
|
|
changed_assets.remove(handle);
|
|
removed.push(handle.clone_weak());
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut extracted_assets = Vec::new();
|
|
for handle in changed_assets.drain() {
|
|
if let Some(asset) = assets.get(&handle) {
|
|
extracted_assets.push((handle, asset.extract_asset()));
|
|
}
|
|
}
|
|
|
|
commands.insert_resource(ExtractedAssets {
|
|
extracted: extracted_assets,
|
|
removed,
|
|
});
|
|
}
|
|
|
|
// TODO: consider storing inside system?
|
|
/// All assets that should be prepared next frame.
|
|
#[derive(Resource)]
|
|
pub struct PrepareNextFrameAssets<A: RenderAsset> {
|
|
assets: Vec<(Handle<A>, A::ExtractedAsset)>,
|
|
}
|
|
|
|
impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
|
|
fn default() -> Self {
|
|
Self {
|
|
assets: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This system prepares all assets of the corresponding [`RenderAsset`] type
|
|
/// which where extracted this frame for the GPU.
|
|
fn prepare_assets<R: RenderAsset>(
|
|
mut extracted_assets: ResMut<ExtractedAssets<R>>,
|
|
mut render_assets: ResMut<RenderAssets<R>>,
|
|
mut prepare_next_frame: ResMut<PrepareNextFrameAssets<R>>,
|
|
param: StaticSystemParam<<R as RenderAsset>::Param>,
|
|
) {
|
|
let mut param = param.into_inner();
|
|
let mut queued_assets = std::mem::take(&mut prepare_next_frame.assets);
|
|
for (handle, extracted_asset) in queued_assets.drain(..) {
|
|
match R::prepare_asset(extracted_asset, &mut param) {
|
|
Ok(prepared_asset) => {
|
|
render_assets.insert(handle, prepared_asset);
|
|
}
|
|
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
|
|
prepare_next_frame.assets.push((handle, extracted_asset));
|
|
}
|
|
}
|
|
}
|
|
|
|
for removed in std::mem::take(&mut extracted_assets.removed) {
|
|
render_assets.remove(&removed);
|
|
}
|
|
|
|
for (handle, extracted_asset) in std::mem::take(&mut extracted_assets.extracted) {
|
|
match R::prepare_asset(extracted_asset, &mut param) {
|
|
Ok(prepared_asset) => {
|
|
render_assets.insert(handle, prepared_asset);
|
|
}
|
|
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
|
|
prepare_next_frame.assets.push((handle, extracted_asset));
|
|
}
|
|
}
|
|
}
|
|
}
|