bevy/crates/bevy_render/src/render_asset.rs
ira 992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00

216 lines
7.7 KiB
Rust

use crate::{Extract, RenderApp, RenderStage};
use bevy_app::{App, Plugin};
use bevy_asset::{Asset, AssetEvent, Assets, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
system::{StaticSystemParam, SystemParam, SystemParamItem},
};
use bevy_utils::{HashMap, HashSet};
use std::marker::PhantomData;
pub enum PrepareAssetError<E: Send + Sync + 'static> {
RetryNextUpdate(E),
}
/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`RenderStage::Extract`](crate::RenderStage::Extract) step the asset is transferred
/// from the "app world" into the "render world".
/// Therefore it is converted into a [`RenderAsset::ExtractedAsset`], which may be the same type
/// as the render asset itself.
///
/// After that in the [`RenderStage::Prepare`](crate::RenderStage::Prepare) step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset::PreparedAsset`].
pub trait RenderAsset: Asset {
/// The representation of the asset in the "render world".
type ExtractedAsset: Send + Sync + 'static;
/// The GPU-representation of the asset.
type PreparedAsset: Send + Sync + 'static;
/// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
/// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
type Param: SystemParam;
/// Converts the asset into a [`RenderAsset::ExtractedAsset`].
fn extract_asset(&self) -> Self::ExtractedAsset;
/// Prepares the `extracted asset` for the GPU by transforming it into
/// a [`RenderAsset::PreparedAsset`]. Therefore ECS data may be accessed via the `param`.
fn prepare_asset(
extracted_asset: Self::ExtractedAsset,
param: &mut SystemParamItem<Self::Param>,
) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>>;
}
#[derive(Clone, Hash, Debug, Default, PartialEq, Eq, SystemLabel)]
pub enum PrepareAssetLabel {
PreAssetPrepare,
#[default]
AssetPrepare,
PostAssetPrepare,
}
/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`RenderStage::Extract`](crate::RenderStage::Extract) and
/// [`RenderStage::Prepare`](crate::RenderStage::Prepare) steps for the specified [`RenderAsset`].
pub struct RenderAssetPlugin<A: RenderAsset> {
prepare_asset_label: PrepareAssetLabel,
phantom: PhantomData<fn() -> A>,
}
impl<A: RenderAsset> RenderAssetPlugin<A> {
pub fn with_prepare_asset_label(prepare_asset_label: PrepareAssetLabel) -> Self {
Self {
prepare_asset_label,
phantom: PhantomData,
}
}
}
impl<A: RenderAsset> Default for RenderAssetPlugin<A> {
fn default() -> Self {
Self {
prepare_asset_label: Default::default(),
phantom: PhantomData,
}
}
}
impl<A: RenderAsset> Plugin for RenderAssetPlugin<A> {
fn build(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
let prepare_asset_system = prepare_assets::<A>.label(self.prepare_asset_label.clone());
let prepare_asset_system = match self.prepare_asset_label {
PrepareAssetLabel::PreAssetPrepare => prepare_asset_system,
PrepareAssetLabel::AssetPrepare => {
prepare_asset_system.after(PrepareAssetLabel::PreAssetPrepare)
}
PrepareAssetLabel::PostAssetPrepare => {
prepare_asset_system.after(PrepareAssetLabel::AssetPrepare)
}
};
render_app
.init_resource::<ExtractedAssets<A>>()
.init_resource::<RenderAssets<A>>()
.init_resource::<PrepareNextFrameAssets<A>>()
.add_system_to_stage(RenderStage::Extract, extract_render_asset::<A>)
.add_system_to_stage(RenderStage::Prepare, prepare_asset_system);
}
}
}
/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
extracted: Vec<(Handle<A>, A::ExtractedAsset)>,
removed: Vec<Handle<A>>,
}
impl<A: RenderAsset> Default for ExtractedAssets<A> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
}
}
}
/// Stores all GPU representations ([`RenderAsset::PreparedAssets`](RenderAsset::PreparedAsset))
/// of [`RenderAssets`](RenderAsset) as long as they exist.
#[derive(Resource, Deref, DerefMut)]
pub struct RenderAssets<A: RenderAsset>(HashMap<Handle<A>, A::PreparedAsset>);
impl<A: RenderAsset> Default for RenderAssets<A> {
fn default() -> Self {
Self(Default::default())
}
}
/// This system extracts all crated or modified assets of the corresponding [`RenderAsset`] type
/// into the "render world".
fn extract_render_asset<A: RenderAsset>(
mut commands: Commands,
mut events: Extract<EventReader<AssetEvent<A>>>,
assets: Extract<Res<Assets<A>>>,
) {
let mut changed_assets = HashSet::default();
let mut removed = Vec::new();
for event in events.iter() {
match event {
AssetEvent::Created { handle } | AssetEvent::Modified { handle } => {
changed_assets.insert(handle.clone_weak());
}
AssetEvent::Removed { handle } => {
changed_assets.remove(handle);
removed.push(handle.clone_weak());
}
}
}
let mut extracted_assets = Vec::new();
for handle in changed_assets.drain() {
if let Some(asset) = assets.get(&handle) {
extracted_assets.push((handle, asset.extract_asset()));
}
}
commands.insert_resource(ExtractedAssets {
extracted: extracted_assets,
removed,
});
}
// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
assets: Vec<(Handle<A>, A::ExtractedAsset)>,
}
impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`RenderAsset`] type
/// which where extracted this frame for the GPU.
fn prepare_assets<R: RenderAsset>(
mut extracted_assets: ResMut<ExtractedAssets<R>>,
mut render_assets: ResMut<RenderAssets<R>>,
mut prepare_next_frame: ResMut<PrepareNextFrameAssets<R>>,
param: StaticSystemParam<<R as RenderAsset>::Param>,
) {
let mut param = param.into_inner();
let mut queued_assets = std::mem::take(&mut prepare_next_frame.assets);
for (handle, extracted_asset) in queued_assets.drain(..) {
match R::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(handle, prepared_asset);
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((handle, extracted_asset));
}
}
}
for removed in std::mem::take(&mut extracted_assets.removed) {
render_assets.remove(&removed);
}
for (handle, extracted_asset) in std::mem::take(&mut extracted_assets.extracted) {
match R::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(handle, prepared_asset);
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((handle, extracted_asset));
}
}
}
}