bevy/crates/bevy_sprite/src/render/mod.rs
Vabka 9a89295a17 Update wgpu to 0.12 and naga to 0.8 (#3375)
# Objective

Fixes #3352
Fixes #3208

## Solution

- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
2021-12-19 03:03:06 +00:00

608 lines
21 KiB
Rust

use std::{cmp::Ordering, ops::Range};
use crate::{
texture_atlas::{TextureAtlas, TextureAtlasSprite},
Rect, Sprite, SPRITE_SHADER_HANDLE,
};
use bevy_asset::{AssetEvent, Assets, Handle};
use bevy_core::FloatOrd;
use bevy_core_pipeline::Transparent2d;
use bevy_ecs::{
prelude::*,
system::{lifetimeless::*, SystemState},
};
use bevy_math::{const_vec3, Mat4, Vec2, Vec3, Vec4Swizzles};
use bevy_render::{
color::Color,
render_asset::RenderAssets,
render_phase::{Draw, DrawFunctions, RenderPhase, TrackedRenderPass},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::{BevyDefault, Image},
view::{ComputedVisibility, ViewUniform, ViewUniformOffset, ViewUniforms},
RenderWorld,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::HashMap;
use bytemuck::{Pod, Zeroable};
use crevice::std140::AsStd140;
use wgpu::SamplerBindingType;
pub struct SpritePipeline {
view_layout: BindGroupLayout,
material_layout: BindGroupLayout,
}
impl FromWorld for SpritePipeline {
fn from_world(world: &mut World) -> Self {
let world = world.cell();
let render_device = world.get_resource::<RenderDevice>().unwrap();
let view_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: BufferSize::new(ViewUniform::std140_size_static() as u64),
},
count: None,
}],
label: Some("sprite_view_layout"),
});
let material_layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
label: Some("sprite_material_layout"),
});
SpritePipeline {
view_layout,
material_layout,
}
}
}
#[derive(Clone, Copy, Hash, PartialEq, Eq)]
pub struct SpritePipelineKey {
colored: bool,
}
impl SpecializedPipeline for SpritePipeline {
type Key = SpritePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let mut vertex_buffer_layout = VertexBufferLayout {
array_stride: 20,
step_mode: VertexStepMode::Vertex,
attributes: vec![
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 0,
shader_location: 0,
},
VertexAttribute {
format: VertexFormat::Float32x2,
offset: 12,
shader_location: 1,
},
],
};
let mut shader_defs = Vec::new();
if key.colored {
shader_defs.push("COLORED".to_string());
vertex_buffer_layout.attributes.push(VertexAttribute {
format: VertexFormat::Uint32,
offset: 20,
shader_location: 2,
});
vertex_buffer_layout.array_stride += 4;
}
RenderPipelineDescriptor {
vertex: VertexState {
shader: SPRITE_SHADER_HANDLE.typed::<Shader>(),
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: SPRITE_SHADER_HANDLE.typed::<Shader>(),
shader_defs,
entry_point: "fragment".into(),
targets: vec![ColorTargetState {
format: TextureFormat::bevy_default(),
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
}],
}),
layout: Some(vec![self.view_layout.clone(), self.material_layout.clone()]),
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
depth_stencil: None,
multisample: MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("sprite_pipeline".into()),
}
}
}
pub struct ExtractedSprite {
pub transform: Mat4,
pub color: Color,
pub rect: Rect,
pub handle: Handle<Image>,
pub atlas_size: Option<Vec2>,
pub flip_x: bool,
pub flip_y: bool,
}
#[derive(Default)]
pub struct ExtractedSprites {
pub sprites: Vec<ExtractedSprite>,
}
#[derive(Default)]
pub struct SpriteAssetEvents {
pub images: Vec<AssetEvent<Image>>,
}
pub fn extract_sprite_events(
mut render_world: ResMut<RenderWorld>,
mut image_events: EventReader<AssetEvent<Image>>,
) {
let mut events = render_world
.get_resource_mut::<SpriteAssetEvents>()
.unwrap();
let SpriteAssetEvents { ref mut images } = *events;
images.clear();
for image in image_events.iter() {
// AssetEvent: !Clone
images.push(match image {
AssetEvent::Created { handle } => AssetEvent::Created {
handle: handle.clone_weak(),
},
AssetEvent::Modified { handle } => AssetEvent::Modified {
handle: handle.clone_weak(),
},
AssetEvent::Removed { handle } => AssetEvent::Removed {
handle: handle.clone_weak(),
},
});
}
}
pub fn extract_sprites(
mut render_world: ResMut<RenderWorld>,
images: Res<Assets<Image>>,
texture_atlases: Res<Assets<TextureAtlas>>,
sprite_query: Query<(
&ComputedVisibility,
&Sprite,
&GlobalTransform,
&Handle<Image>,
)>,
atlas_query: Query<(
&ComputedVisibility,
&TextureAtlasSprite,
&GlobalTransform,
&Handle<TextureAtlas>,
)>,
) {
let mut extracted_sprites = render_world.get_resource_mut::<ExtractedSprites>().unwrap();
extracted_sprites.sprites.clear();
for (computed_visibility, sprite, transform, handle) in sprite_query.iter() {
if !computed_visibility.is_visible {
continue;
}
if let Some(image) = images.get(handle) {
let size = image.texture_descriptor.size;
extracted_sprites.sprites.push(ExtractedSprite {
atlas_size: None,
color: sprite.color,
transform: transform.compute_matrix(),
rect: Rect {
min: Vec2::ZERO,
max: sprite
.custom_size
.unwrap_or_else(|| Vec2::new(size.width as f32, size.height as f32)),
},
flip_x: sprite.flip_x,
flip_y: sprite.flip_y,
handle: handle.clone_weak(),
});
};
}
for (computed_visibility, atlas_sprite, transform, texture_atlas_handle) in atlas_query.iter() {
if !computed_visibility.is_visible {
continue;
}
if let Some(texture_atlas) = texture_atlases.get(texture_atlas_handle) {
if images.contains(&texture_atlas.texture) {
let rect = texture_atlas.textures[atlas_sprite.index as usize];
extracted_sprites.sprites.push(ExtractedSprite {
atlas_size: Some(texture_atlas.size),
color: atlas_sprite.color,
transform: transform.compute_matrix(),
rect,
flip_x: atlas_sprite.flip_x,
flip_y: atlas_sprite.flip_y,
handle: texture_atlas.texture.clone_weak(),
});
}
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct SpriteVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct ColoredSpriteVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
pub color: u32,
}
pub struct SpriteMeta {
vertices: BufferVec<SpriteVertex>,
colored_vertices: BufferVec<ColoredSpriteVertex>,
view_bind_group: Option<BindGroup>,
}
impl Default for SpriteMeta {
fn default() -> Self {
Self {
vertices: BufferVec::new(BufferUsages::VERTEX),
colored_vertices: BufferVec::new(BufferUsages::VERTEX),
view_bind_group: None,
}
}
}
const QUAD_VERTEX_POSITIONS: &[Vec3] = &[
const_vec3!([-0.5, -0.5, 0.0]),
const_vec3!([0.5, 0.5, 0.0]),
const_vec3!([-0.5, 0.5, 0.0]),
const_vec3!([-0.5, -0.5, 0.0]),
const_vec3!([0.5, -0.5, 0.0]),
const_vec3!([0.5, 0.5, 0.0]),
];
#[derive(Component)]
pub struct SpriteBatch {
range: Range<u32>,
handle: Handle<Image>,
z: f32,
colored: bool,
}
pub fn prepare_sprites(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut sprite_meta: ResMut<SpriteMeta>,
mut extracted_sprites: ResMut<ExtractedSprites>,
) {
sprite_meta.vertices.clear();
sprite_meta.colored_vertices.clear();
// sort first by z and then by handle. this ensures that, when possible, batches span multiple z layers
// batches won't span z-layers if there is another batch between them
extracted_sprites.sprites.sort_by(|a, b| {
match FloatOrd(a.transform.w_axis[2]).cmp(&FloatOrd(b.transform.w_axis[2])) {
Ordering::Equal => a.handle.cmp(&b.handle),
other => other,
}
});
let mut start = 0;
let mut end = 0;
let mut colored_start = 0;
let mut colored_end = 0;
let mut current_batch_handle: Option<Handle<Image>> = None;
let mut current_batch_colored = false;
let mut last_z = 0.0;
for extracted_sprite in extracted_sprites.sprites.iter() {
let colored = extracted_sprite.color != Color::WHITE;
if let Some(current_batch_handle) = &current_batch_handle {
if *current_batch_handle != extracted_sprite.handle || current_batch_colored != colored
{
if current_batch_colored {
commands.spawn_bundle((SpriteBatch {
range: colored_start..colored_end,
handle: current_batch_handle.clone_weak(),
z: last_z,
colored: true,
},));
colored_start = colored_end;
} else {
commands.spawn_bundle((SpriteBatch {
range: start..end,
handle: current_batch_handle.clone_weak(),
z: last_z,
colored: false,
},));
start = end;
}
}
}
current_batch_handle = Some(extracted_sprite.handle.clone_weak());
current_batch_colored = colored;
let sprite_rect = extracted_sprite.rect;
// Specify the corners of the sprite
let mut bottom_left = Vec2::new(sprite_rect.min.x, sprite_rect.max.y);
let mut top_left = sprite_rect.min;
let mut top_right = Vec2::new(sprite_rect.max.x, sprite_rect.min.y);
let mut bottom_right = sprite_rect.max;
if extracted_sprite.flip_x {
bottom_left.x = sprite_rect.max.x;
top_left.x = sprite_rect.max.x;
bottom_right.x = sprite_rect.min.x;
top_right.x = sprite_rect.min.x;
}
if extracted_sprite.flip_y {
bottom_left.y = sprite_rect.min.y;
bottom_right.y = sprite_rect.min.y;
top_left.y = sprite_rect.max.y;
top_right.y = sprite_rect.max.y;
}
let atlas_extent = extracted_sprite.atlas_size.unwrap_or(sprite_rect.max);
bottom_left /= atlas_extent;
bottom_right /= atlas_extent;
top_left /= atlas_extent;
top_right /= atlas_extent;
let uvs: [[f32; 2]; 6] = [
bottom_left.into(),
top_right.into(),
top_left.into(),
bottom_left.into(),
bottom_right.into(),
top_right.into(),
];
let rect_size = extracted_sprite.rect.size().extend(1.0);
if current_batch_colored {
let color = extracted_sprite.color.as_linear_rgba_f32();
// encode color as a single u32 to save space
let color = (color[0] * 255.0) as u32
| ((color[1] * 255.0) as u32) << 8
| ((color[2] * 255.0) as u32) << 16
| ((color[3] * 255.0) as u32) << 24;
for (index, vertex_position) in QUAD_VERTEX_POSITIONS.iter().enumerate() {
let mut final_position = *vertex_position * rect_size;
final_position = (extracted_sprite.transform * final_position.extend(1.0)).xyz();
sprite_meta.colored_vertices.push(ColoredSpriteVertex {
position: final_position.into(),
uv: uvs[index],
color,
});
}
} else {
for (index, vertex_position) in QUAD_VERTEX_POSITIONS.iter().enumerate() {
let mut final_position = *vertex_position * rect_size;
final_position = (extracted_sprite.transform * final_position.extend(1.0)).xyz();
sprite_meta.vertices.push(SpriteVertex {
position: final_position.into(),
uv: uvs[index],
});
}
}
last_z = extracted_sprite.transform.w_axis[2];
if current_batch_colored {
colored_end += QUAD_VERTEX_POSITIONS.len() as u32;
} else {
end += QUAD_VERTEX_POSITIONS.len() as u32;
}
}
// if start != end, there is one last batch to process
if start != end {
if let Some(current_batch_handle) = current_batch_handle {
commands.spawn_bundle((SpriteBatch {
range: start..end,
handle: current_batch_handle,
colored: false,
z: last_z,
},));
}
} else if colored_start != colored_end {
if let Some(current_batch_handle) = current_batch_handle {
commands.spawn_bundle((SpriteBatch {
range: colored_start..colored_end,
handle: current_batch_handle,
colored: true,
z: last_z,
},));
}
}
sprite_meta
.vertices
.write_buffer(&render_device, &render_queue);
sprite_meta
.colored_vertices
.write_buffer(&render_device, &render_queue);
}
#[derive(Default)]
pub struct ImageBindGroups {
values: HashMap<Handle<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
pub fn queue_sprites(
draw_functions: Res<DrawFunctions<Transparent2d>>,
render_device: Res<RenderDevice>,
mut sprite_meta: ResMut<SpriteMeta>,
view_uniforms: Res<ViewUniforms>,
sprite_pipeline: Res<SpritePipeline>,
mut pipelines: ResMut<SpecializedPipelines<SpritePipeline>>,
mut pipeline_cache: ResMut<RenderPipelineCache>,
mut image_bind_groups: ResMut<ImageBindGroups>,
gpu_images: Res<RenderAssets<Image>>,
mut sprite_batches: Query<(Entity, &SpriteBatch)>,
mut views: Query<&mut RenderPhase<Transparent2d>>,
events: Res<SpriteAssetEvents>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Created { .. } => None,
AssetEvent::Modified { handle } => image_bind_groups.values.remove(handle),
AssetEvent::Removed { handle } => image_bind_groups.values.remove(handle),
};
}
if let Some(view_binding) = view_uniforms.uniforms.binding() {
sprite_meta.view_bind_group = Some(render_device.create_bind_group(&BindGroupDescriptor {
entries: &[BindGroupEntry {
binding: 0,
resource: view_binding,
}],
label: Some("sprite_view_bind_group"),
layout: &sprite_pipeline.view_layout,
}));
let draw_sprite_function = draw_functions.read().get_id::<DrawSprite>().unwrap();
let pipeline = pipelines.specialize(
&mut pipeline_cache,
&sprite_pipeline,
SpritePipelineKey { colored: false },
);
let colored_pipeline = pipelines.specialize(
&mut pipeline_cache,
&sprite_pipeline,
SpritePipelineKey { colored: true },
);
for mut transparent_phase in views.iter_mut() {
for (entity, batch) in sprite_batches.iter_mut() {
image_bind_groups
.values
.entry(batch.handle.clone_weak())
.or_insert_with(|| {
let gpu_image = gpu_images.get(&batch.handle).unwrap();
render_device.create_bind_group(&BindGroupDescriptor {
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(&gpu_image.texture_view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(&gpu_image.sampler),
},
],
label: Some("sprite_material_bind_group"),
layout: &sprite_pipeline.material_layout,
})
});
transparent_phase.add(Transparent2d {
draw_function: draw_sprite_function,
pipeline: if batch.colored {
colored_pipeline
} else {
pipeline
},
entity,
sort_key: FloatOrd(batch.z),
});
}
}
}
}
pub struct DrawSprite {
params: SystemState<(
SRes<SpriteMeta>,
SRes<ImageBindGroups>,
SRes<RenderPipelineCache>,
SQuery<Read<ViewUniformOffset>>,
SQuery<Read<SpriteBatch>>,
)>,
}
impl DrawSprite {
pub fn new(world: &mut World) -> Self {
Self {
params: SystemState::new(world),
}
}
}
impl Draw<Transparent2d> for DrawSprite {
fn draw<'w>(
&mut self,
world: &'w World,
pass: &mut TrackedRenderPass<'w>,
view: Entity,
item: &Transparent2d,
) {
let (sprite_meta, image_bind_groups, pipelines, views, sprites) = self.params.get(world);
let view_uniform = views.get(view).unwrap();
let sprite_meta = sprite_meta.into_inner();
let image_bind_groups = image_bind_groups.into_inner();
let sprite_batch = sprites.get(item.entity).unwrap();
if let Some(pipeline) = pipelines.into_inner().get(item.pipeline) {
pass.set_render_pipeline(pipeline);
if sprite_batch.colored {
pass.set_vertex_buffer(0, sprite_meta.colored_vertices.buffer().unwrap().slice(..));
} else {
pass.set_vertex_buffer(0, sprite_meta.vertices.buffer().unwrap().slice(..));
}
pass.set_bind_group(
0,
sprite_meta.view_bind_group.as_ref().unwrap(),
&[view_uniform.offset],
);
pass.set_bind_group(
1,
image_bind_groups.values.get(&sprite_batch.handle).unwrap(),
&[],
);
pass.draw(sprite_batch.range.clone(), 0..1);
}
}
}