A fork of bevy to implement some features for forestia
Go to file
Carter Anderson 9cdb915809
Required Components (#14791)
## Introduction

This is the first step in my [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437).

Fixes https://github.com/bevyengine/bevy/issues/7272 #14800.

Bevy's current Bundles as the "unit of construction" hamstring the UI
user experience and have been a pain point in the Bevy ecosystem
generally when composing scenes:

* They are an additional _object defining_ concept, which must be
learned separately from components. Notably, Bundles _are not present at
runtime_, which is confusing and limiting.
* They can completely erase the _defining component_ during Bundle init.
For example, `ButtonBundle { style: Style::default(), ..default() }`
_makes no mention_ of the `Button` component symbol, which is what makes
the Entity a "button"!
* They are not capable of representing "dependency inheritance" without
completely non-viable / ergonomically crushing nested bundles. This
limitation is especially painful in UI scenarios, but it applies to
everything across the board.
* They introduce a bunch of additional nesting when defining scenes,
making them ugly to look at
* They introduce component name "stutter": `SomeBundle { component_name:
ComponentName::new() }`
* They require copious sprinklings of `..default()` when spawning them
in Rust code, due to the additional layer of nesting

**Required Components** solve this by allowing you to define which
components a given component needs, and how to construct those
components when they aren't explicitly provided.

This is what a `ButtonBundle` looks like with Bundles (the current
approach):

```rust
#[derive(Component, Default)]
struct Button;

#[derive(Bundle, Default)]
struct ButtonBundle {
    pub button: Button,
    pub node: Node,
    pub style: Style,
    pub interaction: Interaction,
    pub focus_policy: FocusPolicy,
    pub border_color: BorderColor,
    pub border_radius: BorderRadius,
    pub image: UiImage,
    pub transform: Transform,
    pub global_transform: GlobalTransform,
    pub visibility: Visibility,
    pub inherited_visibility: InheritedVisibility,
    pub view_visibility: ViewVisibility,
    pub z_index: ZIndex,
}

commands.spawn(ButtonBundle {
    style: Style {
        width: Val::Px(100.0),
        height: Val::Px(50.0),
        ..default()
    },
    focus_policy: FocusPolicy::Block,
    ..default()
})
```

And this is what it looks like with Required Components:

```rust
#[derive(Component)]
#[require(Node, UiImage)]
struct Button;

commands.spawn((
    Button,
    Style { 
        width: Val::Px(100.0),
        height: Val::Px(50.0),
        ..default()
    },
    FocusPolicy::Block,
));
```

With Required Components, we mention only the most relevant components.
Every component required by `Node` (ex: `Style`, `FocusPolicy`, etc) is
automatically brought in!

### Efficiency

1. At insertion/spawn time, Required Components (including recursive
required components) are initialized and inserted _as if they were
manually inserted alongside the given components_. This means that this
is maximally efficient: there are no archetype or table moves.
2. Required components are only initialized and inserted if they were
not manually provided by the developer. For the code example in the
previous section, because `Style` and `FocusPolicy` are inserted
manually, they _will not_ be initialized and inserted as part of the
required components system. Efficient!
3. The "missing required components _and_ constructors needed for an
insertion" are cached in the "archetype graph edge", meaning they aren't
computed per-insertion. When a component is inserted, the "missing
required components" list is iterated (and that graph edge (AddBundle)
is actually already looked up for us during insertion, because we need
that for "normal" insert logic too).

### IDE Integration

The `#[require(SomeComponent)]` macro has been written in such a way
that Rust Analyzer can provide type-inspection-on-hover and `F12` /
go-to-definition for required components.

### Custom Constructors

The `require` syntax expects a `Default` constructor by default, but it
can be overridden with a custom constructor:

```rust
#[derive(Component)]
#[require(
    Node,
    Style(button_style),
    UiImage
)]
struct Button;

fn button_style() -> Style {
    Style {
        width: Val::Px(100.0),
        ..default()
    }
}
```

### Multiple Inheritance

You may have noticed by now that this behaves a bit like "multiple
inheritance". One of the problems that this presents is that it is
possible to have duplicate requires for a given type at different levels
of the inheritance tree:

```rust
#[derive(Component)
struct X(usize);

#[derive(Component)]
#[require(X(x1))
struct Y;

fn x1() -> X {
    X(1)
}

#[derive(Component)]
#[require(
    Y,
    X(x2),
)]
struct Z;

fn x2() -> X {
    X(2)
}

// What version of X is inserted for Z?
commands.spawn(Z);
```

This is allowed (and encouraged), although this doesn't appear to occur
much in practice. First: only one version of `X` is initialized and
inserted for `Z`. In the case above, I think we can all probably agree
that it makes the most sense to use the `x2` constructor for `X`,
because `Y`'s `x1` constructor exists "beneath" `Z` in the inheritance
hierarchy; `Z`'s constructor is "more specific".

The algorithm is simple and predictable:

1. Use all of the constructors (including default constructors) directly
defined in the spawned component's require list
2. In the order the requires are defined in `#[require()]`, recursively
visit the require list of each of the components in the list (this is a
depth Depth First Search). When a constructor is found, it will only be
used if one has not already been found.

From a user perspective, just think about this as the following:

1. Specifying a required component constructor for `Foo` directly on a
spawned component `Bar` will result in that constructor being used (and
overriding existing constructors lower in the inheritance tree). This is
the classic "inheritance override" behavior people expect.
2. For cases where "multiple inheritance" results in constructor
clashes, Components should be listed in "importance order". List a
component earlier in the requirement list to initialize its inheritance
tree earlier.

Required Components _does_ generally result in a model where component
values are decoupled from each other at construction time. Notably, some
existing Bundle patterns use bundle constructors to initialize multiple
components with shared state. I think (in general) moving away from this
is necessary:

1. It allows Required Components (and the Scene system more generally)
to operate according to simple rules
2. The "do arbitrary init value sharing in Bundle constructors" approach
_already_ causes data consistency problems, and those problems would be
exacerbated in the context of a Scene/UI system. For cases where shared
state is truly necessary, I think we are better served by observers /
hooks.
3. If a situation _truly_ needs shared state constructors (which should
be rare / generally discouraged), Bundles are still there if they are
needed.

## Next Steps

* **Require Construct-ed Components**: I have already implemented this
(as defined in the [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437). However
I've removed `Construct` support from this PR, as that has not landed
yet. Adding this back in requires relatively minimal changes to the
current impl, and can be done as part of a future Construct pr.
* **Port Built-in Bundles to Required Components**: This isn't something
we should do right away. It will require rethinking our public
interfaces, which IMO should be done holistically after the rest of Next
Generation Scene / UI lands. I think we should merge this PR first and
let people experiment _inside their own code with their own Components_
while we wait for the rest of the new scene system to land.
* **_Consider_ Automatic Required Component Removal**: We should
evaluate _if_ automatic Required Component removal should be done. Ex:
if all components that explicitly require a component are removed,
automatically remove that component. This issue has been explicitly
deferred in this PR, as I consider the insertion behavior to be
desirable on its own (and viable on its own). I am also doubtful that we
can find a design that has behavior we actually want. Aka: can we
_really_ distinguish between a component that is "only there because it
was automatically inserted" and "a component that was necessary / should
be kept". See my [discussion response
here](https://github.com/bevyengine/bevy/discussions/14437#discussioncomment-10268668)
for more details.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
2024-08-27 20:22:23 +00:00
.cargo Use lld for rustdoc on Linux in config_fast_builds.toml (#14839) 2024-08-22 23:08:04 +00:00
.github Bump crate-ci/typos from 1.23.6 to 1.24.1 (#14922) 2024-08-26 18:35:03 +00:00
assets Allow fog density texture to be scrolled over time with an offset (#14868) 2024-08-22 19:43:14 +00:00
benches Have EntityCommands methods consume self for easier chaining (#14897) 2024-08-26 18:24:59 +00:00
crates Required Components (#14791) 2024-08-27 20:22:23 +00:00
docs Replace the wgpu_trace feature with a field in bevy_render::settings::WgpuSettings (#14842) 2024-08-25 14:16:11 +00:00
docs-template Fix common capitalization errors in documentation (#14562) 2024-07-31 21:16:05 +00:00
errors Generate links to definition in source code pages on docs.rs and dev-docs.bevyengine.org (#12965) 2024-07-29 23:10:16 +00:00
examples Have EntityCommands methods consume self for easier chaining (#14897) 2024-08-26 18:24:59 +00:00
src Fix common capitalization errors in documentation (#14562) 2024-07-31 21:16:05 +00:00
tests Remove manual apply_deferred in bevy_ui (#14768) 2024-08-15 20:51:25 +00:00
tools compile_fail_utils: Verify path exists (#14827) 2024-08-22 16:54:26 +00:00
.gitattributes Enforce linux-style line endings for .rs and .toml (#3197) 2021-11-26 21:05:35 +00:00
.gitignore compile_fail_utils: Ignore target directory (#14829) 2024-08-19 23:37:29 +00:00
Cargo.toml Add bevy_picking sprite backend (#14757) 2024-08-26 18:01:32 +00:00
clippy.toml Fix common capitalization errors in documentation (#14562) 2024-07-31 21:16:05 +00:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md 2020-08-19 20:25:58 +01:00
CONTRIBUTING.md Deprecate old contributing documentation / information (#14885) 2024-08-23 11:47:02 +00:00
CREDITS.md Programmed soundtrack example (#12774) 2024-03-29 20:32:30 +00:00
deny.toml Fix duplicate dependencies on raw-window-handle (#12309) 2024-03-05 08:24:37 +00:00
LICENSE-APACHE Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
LICENSE-MIT Let the project page support GitHub's new ability to display open source licenses (#4966) 2022-06-08 17:55:57 +00:00
README.md Update funding link (#12425) 2024-03-11 21:46:04 +00:00
rustfmt.toml Cargo fmt with unstable features (#1903) 2021-04-21 23:19:34 +00:00
typos.toml remove changelog file (#14564) 2024-07-31 22:24:33 +00:00

Bevy

License Crates.io Downloads Docs CI Discord

What is Bevy?

Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!

WARNING

Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.

MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.

Design Goals

  • Capable: Offer a complete 2D and 3D feature set
  • Simple: Easy for newbies to pick up, but infinitely flexible for power users
  • Data Focused: Data-oriented architecture using the Entity Component System paradigm
  • Modular: Use only what you need. Replace what you don't like
  • Fast: App logic should run quickly, and when possible, in parallel
  • Productive: Changes should compile quickly ... waiting isn't fun

About

  • Features: A quick overview of Bevy's features.
  • News: A development blog that covers our progress, plans and shiny new features.

Docs

Community

Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.

  • Discord: Bevy's official discord server.
  • Reddit: Bevy's official subreddit.
  • GitHub Discussions: The best place for questions about Bevy, answered right here!
  • Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.

Contributing

If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!

For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!

Getting Started

We recommend checking out the Quick Start Guide for a brief introduction.

Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:

# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout

To draw a window with standard functionality enabled, use:

use bevy::prelude::*;

fn main(){
  App::new()
    .add_plugins(DefaultPlugins)
    .run();
}

Fast Compiles

Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.

Bevy Cargo Features

This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.

Thanks

Bevy is the result of the hard work of many people. A huge thanks to all Bevy contributors, the many open source projects that have come before us, the Rust gamedev ecosystem, and the many libraries we build on.

A huge thanks to Bevy's generous sponsors. Bevy will always be free and open source, but it isn't free to make. Please consider sponsoring our work if you like what we're building.

This project is tested with BrowserStack.

License

Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:

at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.

Some of the engine's code carries additional copyright notices and license terms due to their external origins. These are generally BSD-like, but exact details vary by crate: If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed. The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms. The license field of each crate will also reflect this. For example, bevy_mikktspace has code under the Zlib license (as well as a copyright notice when choosing the MIT license).

The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.

Your contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.