bevy/crates/bevy_gizmos/src/arcs.rs
Robert Walter 041731b7e0
Drawing Primitives with Gizmos (#11072)
The PR is in a reviewable state now in the sense that the basic
implementations are there. There are still some ToDos that I'm aware of:

- [x] docs for all the new structs and traits
- [x] implement `Default` and derive other useful traits for the new
structs
- [x] Take a look at the notes again (Do this after a first round of
reviews)
- [x] Take care of the repetition in the circle drawing functions

---

# Objective

- TLDR: This PR enables us to quickly draw all the newly added
primitives from `bevy_math` in immediate mode with gizmos
- Addresses #10571

## Solution

- This implements the first design idea I had that covered everything
that was mentioned in the Issue
https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197

--- 

## Caveats

- I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them
work with the current solution. We could impose less strict requirements
for the gizmoable objects and remove the impls afterwards if the
community doesn't like the current approach.

---

## Changelog

- implement capabilities to draw ellipses on the gizmo in general (this
was required to have some code which is able to draw the ellipse
primitive)
- refactored circle drawing code to use the more general ellipse drawing
code to keep code duplication low
- implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for
`Direction3d`
- implement trait to draw primitives with specialized details with
gizmos
  - `GizmoPrimitive2d` for all the 2D primitives
  - `GizmoPrimitive3d` for all the 3D primitives
- (question while writing this: Does it actually matter if we split this
in 2D and 3D? I guess it could be useful in the future if we do
something based on the main rendering mode even though atm it's kinda
useless)

---

---------

Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00

391 lines
12 KiB
Rust

//! Additional [`Gizmos`] Functions -- Arcs
//!
//! Includes the implementation of [`Gizmos::arc_2d`],
//! and assorted support items.
use crate::circles::DEFAULT_CIRCLE_SEGMENTS;
use crate::prelude::{GizmoConfigGroup, Gizmos};
use bevy_math::{Quat, Vec2, Vec3};
use bevy_render::color::Color;
use std::f32::consts::TAU;
// === 2D ===
impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> {
/// Draw an arc, which is a part of the circumference of a circle, in 2D.
///
/// This should be called for each frame the arc needs to be rendered.
///
/// # Arguments
/// - `position` sets the center of this circle.
/// - `radius` controls the distance from `position` to this arc, and thus its curvature.
/// - `direction_angle` sets the clockwise angle in radians between `Vec2::Y` and
/// the vector from `position` to the midpoint of the arc.
/// - `arc_angle` sets the length of this arc, in radians.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// # use std::f32::consts::PI;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.arc_2d(Vec2::ZERO, 0., PI / 4., 1., Color::GREEN);
///
/// // Arcs have 32 line-segments by default.
/// // You may want to increase this for larger arcs.
/// gizmos
/// .arc_2d(Vec2::ZERO, 0., PI / 4., 5., Color::RED)
/// .segments(64);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn arc_2d(
&mut self,
position: Vec2,
direction_angle: f32,
arc_angle: f32,
radius: f32,
color: Color,
) -> Arc2dBuilder<'_, 'w, 's, T> {
Arc2dBuilder {
gizmos: self,
position,
direction_angle,
arc_angle,
radius,
color,
segments: None,
}
}
}
/// A builder returned by [`Gizmos::arc_2d`].
pub struct Arc2dBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
gizmos: &'a mut Gizmos<'w, 's, T>,
position: Vec2,
direction_angle: f32,
arc_angle: f32,
radius: f32,
color: Color,
segments: Option<usize>,
}
impl<T: GizmoConfigGroup> Arc2dBuilder<'_, '_, '_, T> {
/// Set the number of line-segments for this arc.
pub fn segments(mut self, segments: usize) -> Self {
self.segments.replace(segments);
self
}
}
impl<T: GizmoConfigGroup> Drop for Arc2dBuilder<'_, '_, '_, T> {
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
let segments = self
.segments
.unwrap_or_else(|| segments_from_angle(self.arc_angle));
let positions = arc_2d_inner(self.direction_angle, self.arc_angle, self.radius, segments)
.map(|vec2| (vec2 + self.position));
self.gizmos.linestrip_2d(positions, self.color);
}
}
fn arc_2d_inner(
direction_angle: f32,
arc_angle: f32,
radius: f32,
segments: usize,
) -> impl Iterator<Item = Vec2> {
(0..segments + 1).map(move |i| {
let start = direction_angle - arc_angle / 2.;
let angle = start + (i as f32 * (arc_angle / segments as f32));
Vec2::from(angle.sin_cos()) * radius
})
}
// === 3D ===
impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T> {
/// Draw an arc, which is a part of the circumference of a circle, in 3D. For default values
/// this is drawing a standard arc. A standard arc is defined as
///
/// - an arc with a center at `Vec3::ZERO`
/// - starting at `Vec3::X`
/// - embedded in the XZ plane
/// - rotates counterclockwise
///
/// This should be called for each frame the arc needs to be rendered.
///
/// # Arguments
/// - `angle`: sets how much of a circle circumference is passed, e.g. PI is half a circle. This
/// value should be in the range (-2 * PI..=2 * PI)
/// - `radius`: distance between the arc and it's center point
/// - `position`: position of the arcs center point
/// - `rotation`: defines orientation of the arc, by default we assume the arc is contained in a
/// plane parallel to the XZ plane and the default starting point is (`position + Vec3::X`)
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segments(...)` method.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// # use std::f32::consts::PI;
/// fn system(mut gizmos: Gizmos) {
/// // rotation rotates normal to point in the direction of `Vec3::NEG_ONE`
/// let rotation = Quat::from_rotation_arc(Vec3::Y, Vec3::NEG_ONE.normalize());
///
/// gizmos
/// .arc_3d(
/// 270.0_f32.to_radians(),
/// 0.25,
/// Vec3::ONE,
/// rotation,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn arc_3d(
&mut self,
angle: f32,
radius: f32,
position: Vec3,
rotation: Quat,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
Arc3dBuilder {
gizmos: self,
start_vertex: Vec3::X,
center: position,
rotation,
angle,
radius,
color,
segments: None,
}
}
/// Draws the shortest arc between two points (`from` and `to`) relative to a specified `center` point.
///
/// # Arguments
///
/// - `center`: The center point around which the arc is drawn.
/// - `from`: The starting point of the arc.
/// - `to`: The ending point of the arc.
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segments(...)` method.
///
/// # Examples
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.short_arc_3d_between(
/// Vec3::ONE,
/// Vec3::ONE + Vec3::NEG_ONE,
/// Vec3::ZERO,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// # Notes
/// - This method assumes that the points `from` and `to` are distinct from `center`. If one of
/// the points is coincident with `center`, nothing is rendered.
/// - The arc is drawn as a portion of a circle with a radius equal to the distance from the
/// `center` to `from`. If the distance from `center` to `to` is not equal to the radius, then
/// the results will behave as if this were the case
#[inline]
pub fn short_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
self.arc_from_to(center, from, to, color, |x| x)
}
/// Draws the longest arc between two points (`from` and `to`) relative to a specified `center` point.
///
/// # Arguments
/// - `center`: The center point around which the arc is drawn.
/// - `from`: The starting point of the arc.
/// - `to`: The ending point of the arc.
/// - `color`: color of the arc
///
/// # Builder methods
/// The number of segments of the arc (i.e. the level of detail) can be adjusted with the
/// `.segments(...)` method.
///
/// # Examples
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_render::prelude::*;
/// # use bevy_math::prelude::*;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.long_arc_3d_between(
/// Vec3::ONE,
/// Vec3::ONE + Vec3::NEG_ONE,
/// Vec3::ZERO,
/// Color::ORANGE
/// )
/// .segments(100);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
///
/// # Notes
/// - This method assumes that the points `from` and `to` are distinct from `center`. If one of
/// the points is coincident with `center`, nothing is rendered.
/// - The arc is drawn as a portion of a circle with a radius equal to the distance from the
/// `center` to `from`. If the distance from `center` to `to` is not equal to the radius, then
/// the results will behave as if this were the case.
#[inline]
pub fn long_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
) -> Arc3dBuilder<'_, 'w, 's, T> {
self.arc_from_to(center, from, to, color, |angle| {
if angle > 0.0 {
TAU - angle
} else if angle < 0.0 {
-TAU - angle
} else {
0.0
}
})
}
#[inline]
fn arc_from_to(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: Color,
angle_fn: impl Fn(f32) -> f32,
) -> Arc3dBuilder<'_, 'w, 's, T> {
// `from` and `to` can be the same here since in either case nothing gets rendered and the
// orientation ambiguity of `up` doesn't matter
let from_axis = (from - center).normalize_or_zero();
let to_axis = (to - center).normalize_or_zero();
let (up, angle) = Quat::from_rotation_arc(from_axis, to_axis).to_axis_angle();
let angle = angle_fn(angle);
let radius = center.distance(from);
let rotation = Quat::from_rotation_arc(Vec3::Y, up);
let start_vertex = rotation.inverse() * from_axis;
Arc3dBuilder {
gizmos: self,
start_vertex,
center,
rotation,
angle,
radius,
color,
segments: None,
}
}
}
/// A builder returned by [`Gizmos::arc_2d`].
pub struct Arc3dBuilder<'a, 'w, 's, T: GizmoConfigGroup> {
gizmos: &'a mut Gizmos<'w, 's, T>,
// this is the vertex the arc starts on in the XZ plane. For the normal arc_3d method this is
// always starting at Vec3::X. For the short/long arc methods we actually need a way to start
// at the from position and this is where this internal field comes into play. Some implicit
// assumptions:
//
// 1. This is always in the XZ plane
// 2. This is always normalized
//
// DO NOT expose this field to users as it is easy to mess this up
start_vertex: Vec3,
center: Vec3,
rotation: Quat,
angle: f32,
radius: f32,
color: Color,
segments: Option<usize>,
}
impl<T: GizmoConfigGroup> Arc3dBuilder<'_, '_, '_, T> {
/// Set the number of line-segments for this arc.
pub fn segments(mut self, segments: usize) -> Self {
self.segments.replace(segments);
self
}
}
impl<T: GizmoConfigGroup> Drop for Arc3dBuilder<'_, '_, '_, T> {
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
let segments = self
.segments
.unwrap_or_else(|| segments_from_angle(self.angle));
let positions = arc_3d_inner(
self.start_vertex,
self.center,
self.rotation,
self.angle,
self.radius,
segments,
);
self.gizmos.linestrip(positions, self.color);
}
}
fn arc_3d_inner(
start_vertex: Vec3,
center: Vec3,
rotation: Quat,
angle: f32,
radius: f32,
segments: usize,
) -> impl Iterator<Item = Vec3> {
// drawing arcs bigger than TAU degrees or smaller than -TAU degrees makes no sense since
// we won't see the overlap and we would just decrease the level of details since the segments
// would be larger
let angle = angle.clamp(-TAU, TAU);
(0..=segments)
.map(move |frac| frac as f32 / segments as f32)
.map(move |percentage| angle * percentage)
.map(move |frac_angle| Quat::from_axis_angle(Vec3::Y, frac_angle) * start_vertex)
.map(move |p| rotation * (p * radius) + center)
}
// helper function for getting a default value for the segments parameter
fn segments_from_angle(angle: f32) -> usize {
((angle.abs() / TAU) * DEFAULT_CIRCLE_SEGMENTS as f32).ceil() as usize
}