
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> Co-authored-by: atlv <email@atlasdostal.com>
1398 lines
56 KiB
Rust
1398 lines
56 KiB
Rust
#![expect(
|
|
clippy::module_inception,
|
|
reason = "The parent module contains all things viewport-related, while this module handles cameras as a component. However, a rename/refactor which should clear up this lint is being discussed; see #17196."
|
|
)]
|
|
use super::{ClearColorConfig, Projection};
|
|
use crate::{
|
|
batching::gpu_preprocessing::{GpuPreprocessingMode, GpuPreprocessingSupport},
|
|
camera::{ManualTextureViewHandle, ManualTextureViews},
|
|
primitives::Frustum,
|
|
render_asset::RenderAssets,
|
|
render_graph::{InternedRenderSubGraph, RenderSubGraph},
|
|
render_resource::TextureView,
|
|
sync_world::{RenderEntity, SyncToRenderWorld},
|
|
texture::GpuImage,
|
|
view::{
|
|
ColorGrading, ExtractedView, ExtractedWindows, Hdr, Msaa, NoIndirectDrawing, RenderLayers,
|
|
RenderVisibleEntities, RetainedViewEntity, ViewUniformOffset, Visibility, VisibleEntities,
|
|
},
|
|
Extract,
|
|
};
|
|
use bevy_asset::{AssetEvent, AssetId, Assets, Handle};
|
|
use bevy_derive::{Deref, DerefMut};
|
|
use bevy_ecs::{
|
|
change_detection::DetectChanges,
|
|
component::Component,
|
|
entity::{ContainsEntity, Entity},
|
|
event::EventReader,
|
|
lifecycle::HookContext,
|
|
prelude::With,
|
|
query::Has,
|
|
reflect::ReflectComponent,
|
|
resource::Resource,
|
|
system::{Commands, Query, Res, ResMut},
|
|
world::DeferredWorld,
|
|
};
|
|
use bevy_image::Image;
|
|
use bevy_math::{ops, vec2, Dir3, FloatOrd, Mat4, Ray3d, Rect, URect, UVec2, UVec4, Vec2, Vec3};
|
|
use bevy_platform::collections::{HashMap, HashSet};
|
|
use bevy_reflect::prelude::*;
|
|
use bevy_render_macros::ExtractComponent;
|
|
use bevy_transform::components::{GlobalTransform, Transform};
|
|
use bevy_window::{
|
|
NormalizedWindowRef, PrimaryWindow, Window, WindowCreated, WindowRef, WindowResized,
|
|
WindowScaleFactorChanged,
|
|
};
|
|
use core::ops::Range;
|
|
use derive_more::derive::From;
|
|
use thiserror::Error;
|
|
use tracing::warn;
|
|
use wgpu::{BlendState, TextureFormat, TextureUsages};
|
|
|
|
/// Render viewport configuration for the [`Camera`] component.
|
|
///
|
|
/// The viewport defines the area on the render target to which the camera renders its image.
|
|
/// You can overlay multiple cameras in a single window using viewports to create effects like
|
|
/// split screen, minimaps, and character viewers.
|
|
#[derive(Reflect, Debug, Clone)]
|
|
#[reflect(Default, Clone)]
|
|
pub struct Viewport {
|
|
/// The physical position to render this viewport to within the [`RenderTarget`] of this [`Camera`].
|
|
/// (0,0) corresponds to the top-left corner
|
|
pub physical_position: UVec2,
|
|
/// The physical size of the viewport rectangle to render to within the [`RenderTarget`] of this [`Camera`].
|
|
/// The origin of the rectangle is in the top-left corner.
|
|
pub physical_size: UVec2,
|
|
/// The minimum and maximum depth to render (on a scale from 0.0 to 1.0).
|
|
pub depth: Range<f32>,
|
|
}
|
|
|
|
impl Default for Viewport {
|
|
fn default() -> Self {
|
|
Self {
|
|
physical_position: Default::default(),
|
|
physical_size: UVec2::new(1, 1),
|
|
depth: 0.0..1.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Viewport {
|
|
/// Cut the viewport rectangle so that it lies inside a rectangle of the
|
|
/// given size.
|
|
///
|
|
/// If either of the viewport's position coordinates lies outside the given
|
|
/// dimensions, it will be moved just inside first. If either of the given
|
|
/// dimensions is zero, the position and size of the viewport rectangle will
|
|
/// both be set to zero in that dimension.
|
|
pub fn clamp_to_size(&mut self, size: UVec2) {
|
|
// If the origin of the viewport rect is outside, then adjust so that
|
|
// it's just barely inside. Then, cut off the part that is outside.
|
|
if self.physical_size.x + self.physical_position.x > size.x {
|
|
if self.physical_position.x < size.x {
|
|
self.physical_size.x = size.x - self.physical_position.x;
|
|
} else if size.x > 0 {
|
|
self.physical_position.x = size.x - 1;
|
|
self.physical_size.x = 1;
|
|
} else {
|
|
self.physical_position.x = 0;
|
|
self.physical_size.x = 0;
|
|
}
|
|
}
|
|
if self.physical_size.y + self.physical_position.y > size.y {
|
|
if self.physical_position.y < size.y {
|
|
self.physical_size.y = size.y - self.physical_position.y;
|
|
} else if size.y > 0 {
|
|
self.physical_position.y = size.y - 1;
|
|
self.physical_size.y = 1;
|
|
} else {
|
|
self.physical_position.y = 0;
|
|
self.physical_size.y = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn with_override(
|
|
&self,
|
|
main_pass_resolution_override: Option<&MainPassResolutionOverride>,
|
|
) -> Self {
|
|
let mut viewport = self.clone();
|
|
if let Some(override_size) = main_pass_resolution_override {
|
|
viewport.physical_size = **override_size;
|
|
}
|
|
viewport
|
|
}
|
|
}
|
|
|
|
/// Settings to define a camera sub view.
|
|
///
|
|
/// When [`Camera::sub_camera_view`] is `Some`, only the sub-section of the
|
|
/// image defined by `size` and `offset` (relative to the `full_size` of the
|
|
/// whole image) is projected to the cameras viewport.
|
|
///
|
|
/// Take the example of the following multi-monitor setup:
|
|
/// ```css
|
|
/// ┌───┬───┐
|
|
/// │ A │ B │
|
|
/// ├───┼───┤
|
|
/// │ C │ D │
|
|
/// └───┴───┘
|
|
/// ```
|
|
/// If each monitor is 1920x1080, the whole image will have a resolution of
|
|
/// 3840x2160. For each monitor we can use a single camera with a viewport of
|
|
/// the same size as the monitor it corresponds to. To ensure that the image is
|
|
/// cohesive, we can use a different sub view on each camera:
|
|
/// - Camera A: `full_size` = 3840x2160, `size` = 1920x1080, `offset` = 0,0
|
|
/// - Camera B: `full_size` = 3840x2160, `size` = 1920x1080, `offset` = 1920,0
|
|
/// - Camera C: `full_size` = 3840x2160, `size` = 1920x1080, `offset` = 0,1080
|
|
/// - Camera D: `full_size` = 3840x2160, `size` = 1920x1080, `offset` =
|
|
/// 1920,1080
|
|
///
|
|
/// However since only the ratio between the values is important, they could all
|
|
/// be divided by 120 and still produce the same image. Camera D would for
|
|
/// example have the following values:
|
|
/// `full_size` = 32x18, `size` = 16x9, `offset` = 16,9
|
|
#[derive(Debug, Clone, Copy, Reflect, PartialEq)]
|
|
#[reflect(Clone, PartialEq, Default)]
|
|
pub struct SubCameraView {
|
|
/// Size of the entire camera view
|
|
pub full_size: UVec2,
|
|
/// Offset of the sub camera
|
|
pub offset: Vec2,
|
|
/// Size of the sub camera
|
|
pub size: UVec2,
|
|
}
|
|
|
|
impl Default for SubCameraView {
|
|
fn default() -> Self {
|
|
Self {
|
|
full_size: UVec2::new(1, 1),
|
|
offset: Vec2::new(0., 0.),
|
|
size: UVec2::new(1, 1),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Information about the current [`RenderTarget`].
|
|
#[derive(Default, Debug, Clone)]
|
|
pub struct RenderTargetInfo {
|
|
/// The physical size of this render target (in physical pixels, ignoring scale factor).
|
|
pub physical_size: UVec2,
|
|
/// The scale factor of this render target.
|
|
///
|
|
/// When rendering to a window, typically it is a value greater or equal than 1.0,
|
|
/// representing the ratio between the size of the window in physical pixels and the logical size of the window.
|
|
pub scale_factor: f32,
|
|
}
|
|
|
|
/// Holds internally computed [`Camera`] values.
|
|
#[derive(Default, Debug, Clone)]
|
|
pub struct ComputedCameraValues {
|
|
clip_from_view: Mat4,
|
|
target_info: Option<RenderTargetInfo>,
|
|
// size of the `Viewport`
|
|
old_viewport_size: Option<UVec2>,
|
|
old_sub_camera_view: Option<SubCameraView>,
|
|
}
|
|
|
|
/// How much energy a `Camera3d` absorbs from incoming light.
|
|
///
|
|
/// <https://en.wikipedia.org/wiki/Exposure_(photography)>
|
|
#[derive(Component, Clone, Copy, Reflect)]
|
|
#[reflect(opaque)]
|
|
#[reflect(Component, Default, Clone)]
|
|
pub struct Exposure {
|
|
/// <https://en.wikipedia.org/wiki/Exposure_value#Tabulated_exposure_values>
|
|
pub ev100: f32,
|
|
}
|
|
|
|
impl Exposure {
|
|
pub const SUNLIGHT: Self = Self {
|
|
ev100: Self::EV100_SUNLIGHT,
|
|
};
|
|
pub const OVERCAST: Self = Self {
|
|
ev100: Self::EV100_OVERCAST,
|
|
};
|
|
pub const INDOOR: Self = Self {
|
|
ev100: Self::EV100_INDOOR,
|
|
};
|
|
/// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
|
|
/// It also happens to be a reasonable default.
|
|
///
|
|
/// See <https://github.com/bevyengine/bevy/issues/11577> for details.
|
|
pub const BLENDER: Self = Self {
|
|
ev100: Self::EV100_BLENDER,
|
|
};
|
|
|
|
pub const EV100_SUNLIGHT: f32 = 15.0;
|
|
pub const EV100_OVERCAST: f32 = 12.0;
|
|
pub const EV100_INDOOR: f32 = 7.0;
|
|
|
|
/// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
|
|
/// It also happens to be a reasonable default.
|
|
///
|
|
/// See <https://github.com/bevyengine/bevy/issues/11577> for details.
|
|
pub const EV100_BLENDER: f32 = 9.7;
|
|
|
|
pub fn from_physical_camera(physical_camera_parameters: PhysicalCameraParameters) -> Self {
|
|
Self {
|
|
ev100: physical_camera_parameters.ev100(),
|
|
}
|
|
}
|
|
|
|
/// Converts EV100 values to exposure values.
|
|
/// <https://google.github.io/filament/Filament.md.html#imagingpipeline/physicallybasedcamera/exposure>
|
|
#[inline]
|
|
pub fn exposure(&self) -> f32 {
|
|
ops::exp2(-self.ev100) / 1.2
|
|
}
|
|
}
|
|
|
|
impl Default for Exposure {
|
|
fn default() -> Self {
|
|
Self::BLENDER
|
|
}
|
|
}
|
|
|
|
/// Parameters based on physical camera characteristics for calculating EV100
|
|
/// values for use with [`Exposure`]. This is also used for depth of field.
|
|
#[derive(Clone, Copy)]
|
|
pub struct PhysicalCameraParameters {
|
|
/// <https://en.wikipedia.org/wiki/F-number>
|
|
pub aperture_f_stops: f32,
|
|
/// <https://en.wikipedia.org/wiki/Shutter_speed>
|
|
pub shutter_speed_s: f32,
|
|
/// <https://en.wikipedia.org/wiki/Film_speed>
|
|
pub sensitivity_iso: f32,
|
|
/// The height of the [image sensor format] in meters.
|
|
///
|
|
/// Focal length is derived from the FOV and this value. The default is
|
|
/// 18.66mm, matching the [Super 35] format, which is popular in cinema.
|
|
///
|
|
/// [image sensor format]: https://en.wikipedia.org/wiki/Image_sensor_format
|
|
///
|
|
/// [Super 35]: https://en.wikipedia.org/wiki/Super_35
|
|
pub sensor_height: f32,
|
|
}
|
|
|
|
impl PhysicalCameraParameters {
|
|
/// Calculate the [EV100](https://en.wikipedia.org/wiki/Exposure_value).
|
|
pub fn ev100(&self) -> f32 {
|
|
ops::log2(
|
|
self.aperture_f_stops * self.aperture_f_stops * 100.0
|
|
/ (self.shutter_speed_s * self.sensitivity_iso),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Default for PhysicalCameraParameters {
|
|
fn default() -> Self {
|
|
Self {
|
|
aperture_f_stops: 1.0,
|
|
shutter_speed_s: 1.0 / 125.0,
|
|
sensitivity_iso: 100.0,
|
|
sensor_height: 0.01866,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Error returned when a conversion between world-space and viewport-space coordinates fails.
|
|
///
|
|
/// See [`world_to_viewport`][Camera::world_to_viewport] and [`viewport_to_world`][Camera::viewport_to_world].
|
|
#[derive(Debug, Eq, PartialEq, Copy, Clone, Error)]
|
|
pub enum ViewportConversionError {
|
|
/// The pre-computed size of the viewport was not available.
|
|
///
|
|
/// This may be because the `Camera` was just created and [`camera_system`] has not been executed
|
|
/// yet, or because the [`RenderTarget`] is misconfigured in one of the following ways:
|
|
/// - it references the [`PrimaryWindow`](RenderTarget::Window) when there is none,
|
|
/// - it references a [`Window`](RenderTarget::Window) entity that doesn't exist or doesn't actually have a `Window` component,
|
|
/// - it references an [`Image`](RenderTarget::Image) that doesn't exist (invalid handle),
|
|
/// - it references a [`TextureView`](RenderTarget::TextureView) that doesn't exist (invalid handle).
|
|
#[error("pre-computed size of viewport not available")]
|
|
NoViewportSize,
|
|
/// The computed coordinate was beyond the `Camera`'s near plane.
|
|
///
|
|
/// Only applicable when converting from world-space to viewport-space.
|
|
#[error("computed coordinate beyond `Camera`'s near plane")]
|
|
PastNearPlane,
|
|
/// The computed coordinate was beyond the `Camera`'s far plane.
|
|
///
|
|
/// Only applicable when converting from world-space to viewport-space.
|
|
#[error("computed coordinate beyond `Camera`'s far plane")]
|
|
PastFarPlane,
|
|
/// The Normalized Device Coordinates could not be computed because the `camera_transform`, the
|
|
/// `world_position`, or the projection matrix defined by [`Projection`] contained `NAN` (see
|
|
/// [`world_to_ndc`][Camera::world_to_ndc] and [`ndc_to_world`][Camera::ndc_to_world]).
|
|
#[error("found NaN while computing NDC")]
|
|
InvalidData,
|
|
}
|
|
|
|
/// The defining [`Component`] for camera entities,
|
|
/// storing information about how and what to render through this camera.
|
|
///
|
|
/// The [`Camera`] component is added to an entity to define the properties of the viewpoint from
|
|
/// which rendering occurs. It defines the position of the view to render, the projection method
|
|
/// to transform the 3D objects into a 2D image, as well as the render target into which that image
|
|
/// is produced.
|
|
///
|
|
/// Note that a [`Camera`] needs a [`CameraRenderGraph`] to render anything.
|
|
/// This is typically provided by adding a [`Camera2d`] or [`Camera3d`] component,
|
|
/// but custom render graphs can also be defined. Inserting a [`Camera`] with no render
|
|
/// graph will emit an error at runtime.
|
|
///
|
|
/// [`Camera2d`]: https://docs.rs/bevy/latest/bevy/core_pipeline/core_2d/struct.Camera2d.html
|
|
/// [`Camera3d`]: https://docs.rs/bevy/latest/bevy/core_pipeline/core_3d/struct.Camera3d.html
|
|
#[derive(Component, Debug, Reflect, Clone)]
|
|
#[reflect(Component, Default, Debug, Clone)]
|
|
#[component(on_add = warn_on_no_render_graph)]
|
|
#[require(
|
|
Frustum,
|
|
CameraMainTextureUsages,
|
|
VisibleEntities,
|
|
Transform,
|
|
Visibility,
|
|
Msaa,
|
|
SyncToRenderWorld
|
|
)]
|
|
pub struct Camera {
|
|
/// If set, this camera will render to the given [`Viewport`] rectangle within the configured [`RenderTarget`].
|
|
pub viewport: Option<Viewport>,
|
|
/// Cameras with a higher order are rendered later, and thus on top of lower order cameras.
|
|
pub order: isize,
|
|
/// If this is set to `true`, this camera will be rendered to its specified [`RenderTarget`]. If `false`, this
|
|
/// camera will not be rendered.
|
|
pub is_active: bool,
|
|
/// Computed values for this camera, such as the projection matrix and the render target size.
|
|
#[reflect(ignore, clone)]
|
|
pub computed: ComputedCameraValues,
|
|
/// The "target" that this camera will render to.
|
|
pub target: RenderTarget,
|
|
// todo: reflect this when #6042 lands
|
|
/// The [`CameraOutputMode`] for this camera.
|
|
#[reflect(ignore, clone)]
|
|
pub output_mode: CameraOutputMode,
|
|
/// If this is enabled, a previous camera exists that shares this camera's render target, and this camera has MSAA enabled, then the previous camera's
|
|
/// outputs will be written to the intermediate multi-sampled render target textures for this camera. This enables cameras with MSAA enabled to
|
|
/// "write their results on top" of previous camera results, and include them as a part of their render results. This is enabled by default to ensure
|
|
/// cameras with MSAA enabled layer their results in the same way as cameras without MSAA enabled by default.
|
|
pub msaa_writeback: bool,
|
|
/// The clear color operation to perform on the render target.
|
|
pub clear_color: ClearColorConfig,
|
|
/// If set, this camera will be a sub camera of a large view, defined by a [`SubCameraView`].
|
|
pub sub_camera_view: Option<SubCameraView>,
|
|
}
|
|
|
|
fn warn_on_no_render_graph(world: DeferredWorld, HookContext { entity, caller, .. }: HookContext) {
|
|
if !world.entity(entity).contains::<CameraRenderGraph>() {
|
|
warn!("{}Entity {entity} has a `Camera` component, but it doesn't have a render graph configured. Consider adding a `Camera2d` or `Camera3d` component, or manually adding a `CameraRenderGraph` component if you need a custom render graph.", caller.map(|location|format!("{location}: ")).unwrap_or_default());
|
|
}
|
|
}
|
|
|
|
impl Default for Camera {
|
|
fn default() -> Self {
|
|
Self {
|
|
is_active: true,
|
|
order: 0,
|
|
viewport: None,
|
|
computed: Default::default(),
|
|
target: Default::default(),
|
|
output_mode: Default::default(),
|
|
msaa_writeback: true,
|
|
clear_color: Default::default(),
|
|
sub_camera_view: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Camera {
|
|
/// Converts a physical size in this `Camera` to a logical size.
|
|
#[inline]
|
|
pub fn to_logical(&self, physical_size: UVec2) -> Option<Vec2> {
|
|
let scale = self.computed.target_info.as_ref()?.scale_factor;
|
|
Some(physical_size.as_vec2() / scale)
|
|
}
|
|
|
|
/// The rendered physical bounds [`URect`] of the camera. If the `viewport` field is
|
|
/// set to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to
|
|
/// the full physical rect of the current [`RenderTarget`].
|
|
#[inline]
|
|
pub fn physical_viewport_rect(&self) -> Option<URect> {
|
|
let min = self
|
|
.viewport
|
|
.as_ref()
|
|
.map(|v| v.physical_position)
|
|
.unwrap_or(UVec2::ZERO);
|
|
let max = min + self.physical_viewport_size()?;
|
|
Some(URect { min, max })
|
|
}
|
|
|
|
/// The rendered logical bounds [`Rect`] of the camera. If the `viewport` field is set to
|
|
/// [`Some`], this will be the rect of that custom viewport. Otherwise it will default to the
|
|
/// full logical rect of the current [`RenderTarget`].
|
|
#[inline]
|
|
pub fn logical_viewport_rect(&self) -> Option<Rect> {
|
|
let URect { min, max } = self.physical_viewport_rect()?;
|
|
Some(Rect {
|
|
min: self.to_logical(min)?,
|
|
max: self.to_logical(max)?,
|
|
})
|
|
}
|
|
|
|
/// The logical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
|
|
/// will be the size of that custom viewport. Otherwise it will default to the full logical size
|
|
/// of the current [`RenderTarget`].
|
|
/// For logic that requires the full logical size of the
|
|
/// [`RenderTarget`], prefer [`Camera::logical_target_size`].
|
|
///
|
|
/// Returns `None` if either:
|
|
/// - the function is called just after the `Camera` is created, before `camera_system` is executed,
|
|
/// - the [`RenderTarget`] isn't correctly set:
|
|
/// - it references the [`PrimaryWindow`](RenderTarget::Window) when there is none,
|
|
/// - it references a [`Window`](RenderTarget::Window) entity that doesn't exist or doesn't actually have a `Window` component,
|
|
/// - it references an [`Image`](RenderTarget::Image) that doesn't exist (invalid handle),
|
|
/// - it references a [`TextureView`](RenderTarget::TextureView) that doesn't exist (invalid handle).
|
|
#[inline]
|
|
pub fn logical_viewport_size(&self) -> Option<Vec2> {
|
|
self.viewport
|
|
.as_ref()
|
|
.and_then(|v| self.to_logical(v.physical_size))
|
|
.or_else(|| self.logical_target_size())
|
|
}
|
|
|
|
/// The physical size of this camera's viewport (in physical pixels).
|
|
/// If the `viewport` field is set to [`Some`], this
|
|
/// will be the size of that custom viewport. Otherwise it will default to the full physical size of
|
|
/// the current [`RenderTarget`].
|
|
/// For logic that requires the full physical size of the [`RenderTarget`], prefer [`Camera::physical_target_size`].
|
|
#[inline]
|
|
pub fn physical_viewport_size(&self) -> Option<UVec2> {
|
|
self.viewport
|
|
.as_ref()
|
|
.map(|v| v.physical_size)
|
|
.or_else(|| self.physical_target_size())
|
|
}
|
|
|
|
/// The full logical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
|
|
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
|
|
/// For logic that requires the size of the actually rendered area, prefer [`Camera::logical_viewport_size`].
|
|
#[inline]
|
|
pub fn logical_target_size(&self) -> Option<Vec2> {
|
|
self.computed
|
|
.target_info
|
|
.as_ref()
|
|
.and_then(|t| self.to_logical(t.physical_size))
|
|
}
|
|
|
|
/// The full physical size of this camera's [`RenderTarget`] (in physical pixels),
|
|
/// ignoring custom `viewport` configuration.
|
|
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
|
|
/// For logic that requires the size of the actually rendered area, prefer [`Camera::physical_viewport_size`].
|
|
#[inline]
|
|
pub fn physical_target_size(&self) -> Option<UVec2> {
|
|
self.computed.target_info.as_ref().map(|t| t.physical_size)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn target_scaling_factor(&self) -> Option<f32> {
|
|
self.computed
|
|
.target_info
|
|
.as_ref()
|
|
.map(|t: &RenderTargetInfo| t.scale_factor)
|
|
}
|
|
|
|
/// The projection matrix computed using this camera's [`Projection`].
|
|
#[inline]
|
|
pub fn clip_from_view(&self) -> Mat4 {
|
|
self.computed.clip_from_view
|
|
}
|
|
|
|
/// Given a position in world space, use the camera to compute the viewport-space coordinates.
|
|
///
|
|
/// To get the coordinates in Normalized Device Coordinates, you should use
|
|
/// [`world_to_ndc`](Self::world_to_ndc).
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if `glam_assert` is enabled and the `camera_transform` contains `NAN`
|
|
/// (see [`world_to_ndc`][Self::world_to_ndc]).
|
|
#[doc(alias = "world_to_screen")]
|
|
pub fn world_to_viewport(
|
|
&self,
|
|
camera_transform: &GlobalTransform,
|
|
world_position: Vec3,
|
|
) -> Result<Vec2, ViewportConversionError> {
|
|
let target_rect = self
|
|
.logical_viewport_rect()
|
|
.ok_or(ViewportConversionError::NoViewportSize)?;
|
|
let mut ndc_space_coords = self
|
|
.world_to_ndc(camera_transform, world_position)
|
|
.ok_or(ViewportConversionError::InvalidData)?;
|
|
// NDC z-values outside of 0 < z < 1 are outside the (implicit) camera frustum and are thus not in viewport-space
|
|
if ndc_space_coords.z < 0.0 {
|
|
return Err(ViewportConversionError::PastNearPlane);
|
|
}
|
|
if ndc_space_coords.z > 1.0 {
|
|
return Err(ViewportConversionError::PastFarPlane);
|
|
}
|
|
|
|
// Flip the Y co-ordinate origin from the bottom to the top.
|
|
ndc_space_coords.y = -ndc_space_coords.y;
|
|
|
|
// Once in NDC space, we can discard the z element and map x/y to the viewport rect
|
|
let viewport_position =
|
|
(ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_rect.size() + target_rect.min;
|
|
Ok(viewport_position)
|
|
}
|
|
|
|
/// Given a position in world space, use the camera to compute the viewport-space coordinates and depth.
|
|
///
|
|
/// To get the coordinates in Normalized Device Coordinates, you should use
|
|
/// [`world_to_ndc`](Self::world_to_ndc).
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if `glam_assert` is enabled and the `camera_transform` contains `NAN`
|
|
/// (see [`world_to_ndc`][Self::world_to_ndc]).
|
|
#[doc(alias = "world_to_screen_with_depth")]
|
|
pub fn world_to_viewport_with_depth(
|
|
&self,
|
|
camera_transform: &GlobalTransform,
|
|
world_position: Vec3,
|
|
) -> Result<Vec3, ViewportConversionError> {
|
|
let target_rect = self
|
|
.logical_viewport_rect()
|
|
.ok_or(ViewportConversionError::NoViewportSize)?;
|
|
let mut ndc_space_coords = self
|
|
.world_to_ndc(camera_transform, world_position)
|
|
.ok_or(ViewportConversionError::InvalidData)?;
|
|
// NDC z-values outside of 0 < z < 1 are outside the (implicit) camera frustum and are thus not in viewport-space
|
|
if ndc_space_coords.z < 0.0 {
|
|
return Err(ViewportConversionError::PastNearPlane);
|
|
}
|
|
if ndc_space_coords.z > 1.0 {
|
|
return Err(ViewportConversionError::PastFarPlane);
|
|
}
|
|
|
|
// Stretching ndc depth to value via near plane and negating result to be in positive room again.
|
|
let depth = -self.depth_ndc_to_view_z(ndc_space_coords.z);
|
|
|
|
// Flip the Y co-ordinate origin from the bottom to the top.
|
|
ndc_space_coords.y = -ndc_space_coords.y;
|
|
|
|
// Once in NDC space, we can discard the z element and map x/y to the viewport rect
|
|
let viewport_position =
|
|
(ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_rect.size() + target_rect.min;
|
|
Ok(viewport_position.extend(depth))
|
|
}
|
|
|
|
/// Returns a ray originating from the camera, that passes through everything beyond `viewport_position`.
|
|
///
|
|
/// The resulting ray starts on the near plane of the camera.
|
|
///
|
|
/// If the camera's projection is orthographic the direction of the ray is always equal to `camera_transform.forward()`.
|
|
///
|
|
/// To get the world space coordinates with Normalized Device Coordinates, you should use
|
|
/// [`ndc_to_world`](Self::ndc_to_world).
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the camera's projection matrix is invalid (has a determinant of 0) and
|
|
/// `glam_assert` is enabled (see [`ndc_to_world`](Self::ndc_to_world).
|
|
pub fn viewport_to_world(
|
|
&self,
|
|
camera_transform: &GlobalTransform,
|
|
viewport_position: Vec2,
|
|
) -> Result<Ray3d, ViewportConversionError> {
|
|
let target_rect = self
|
|
.logical_viewport_rect()
|
|
.ok_or(ViewportConversionError::NoViewportSize)?;
|
|
let mut rect_relative = (viewport_position - target_rect.min) / target_rect.size();
|
|
// Flip the Y co-ordinate origin from the top to the bottom.
|
|
rect_relative.y = 1.0 - rect_relative.y;
|
|
|
|
let ndc = rect_relative * 2. - Vec2::ONE;
|
|
let ndc_to_world = camera_transform.to_matrix() * self.computed.clip_from_view.inverse();
|
|
let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
|
|
// Using EPSILON because an ndc with Z = 0 returns NaNs.
|
|
let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));
|
|
|
|
// The fallible direction constructor ensures that world_near_plane and world_far_plane aren't NaN.
|
|
Dir3::new(world_far_plane - world_near_plane)
|
|
.map_err(|_| ViewportConversionError::InvalidData)
|
|
.map(|direction| Ray3d {
|
|
origin: world_near_plane,
|
|
direction,
|
|
})
|
|
}
|
|
|
|
/// Returns a 2D world position computed from a position on this [`Camera`]'s viewport.
|
|
///
|
|
/// Useful for 2D cameras and other cameras with an orthographic projection pointing along the Z axis.
|
|
///
|
|
/// To get the world space coordinates with Normalized Device Coordinates, you should use
|
|
/// [`ndc_to_world`](Self::ndc_to_world).
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the camera's projection matrix is invalid (has a determinant of 0) and
|
|
/// `glam_assert` is enabled (see [`ndc_to_world`](Self::ndc_to_world).
|
|
pub fn viewport_to_world_2d(
|
|
&self,
|
|
camera_transform: &GlobalTransform,
|
|
viewport_position: Vec2,
|
|
) -> Result<Vec2, ViewportConversionError> {
|
|
let target_rect = self
|
|
.logical_viewport_rect()
|
|
.ok_or(ViewportConversionError::NoViewportSize)?;
|
|
let mut rect_relative = (viewport_position - target_rect.min) / target_rect.size();
|
|
|
|
// Flip the Y co-ordinate origin from the top to the bottom.
|
|
rect_relative.y = 1.0 - rect_relative.y;
|
|
|
|
let ndc = rect_relative * 2. - Vec2::ONE;
|
|
|
|
let world_near_plane = self
|
|
.ndc_to_world(camera_transform, ndc.extend(1.))
|
|
.ok_or(ViewportConversionError::InvalidData)?;
|
|
|
|
Ok(world_near_plane.truncate())
|
|
}
|
|
|
|
/// Given a position in world space, use the camera's viewport to compute the Normalized Device Coordinates.
|
|
///
|
|
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
|
|
/// and between 0.0 and 1.0 on the Z axis.
|
|
/// To get the coordinates in the render target's viewport dimensions, you should use
|
|
/// [`world_to_viewport`](Self::world_to_viewport).
|
|
///
|
|
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`Projection`] contain `NAN`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the `camera_transform` contains `NAN` and the `glam_assert` feature is enabled.
|
|
pub fn world_to_ndc(
|
|
&self,
|
|
camera_transform: &GlobalTransform,
|
|
world_position: Vec3,
|
|
) -> Option<Vec3> {
|
|
// Build a transformation matrix to convert from world space to NDC using camera data
|
|
let clip_from_world: Mat4 =
|
|
self.computed.clip_from_view * camera_transform.to_matrix().inverse();
|
|
let ndc_space_coords: Vec3 = clip_from_world.project_point3(world_position);
|
|
|
|
(!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
|
|
}
|
|
|
|
/// Given a position in Normalized Device Coordinates,
|
|
/// use the camera's viewport to compute the world space position.
|
|
///
|
|
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
|
|
/// and between 0.0 and 1.0 on the Z axis.
|
|
/// To get the world space coordinates with the viewport position, you should use
|
|
/// [`world_to_viewport`](Self::world_to_viewport).
|
|
///
|
|
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`Projection`] contain `NAN`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the projection matrix is invalid (has a determinant of 0) and `glam_assert` is enabled.
|
|
pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
|
|
// Build a transformation matrix to convert from NDC to world space using camera data
|
|
let ndc_to_world = camera_transform.to_matrix() * self.computed.clip_from_view.inverse();
|
|
|
|
let world_space_coords = ndc_to_world.project_point3(ndc);
|
|
|
|
(!world_space_coords.is_nan()).then_some(world_space_coords)
|
|
}
|
|
|
|
/// Converts the depth in Normalized Device Coordinates
|
|
/// to linear view z for perspective projections.
|
|
///
|
|
/// Note: Depth values in front of the camera will be negative as -z is forward
|
|
pub fn depth_ndc_to_view_z(&self, ndc_depth: f32) -> f32 {
|
|
let near = self.clip_from_view().w_axis.z; // [3][2]
|
|
-near / ndc_depth
|
|
}
|
|
|
|
/// Converts the depth in Normalized Device Coordinates
|
|
/// to linear view z for orthographic projections.
|
|
///
|
|
/// Note: Depth values in front of the camera will be negative as -z is forward
|
|
pub fn depth_ndc_to_view_z_2d(&self, ndc_depth: f32) -> f32 {
|
|
-(self.clip_from_view().w_axis.z - ndc_depth) / self.clip_from_view().z_axis.z
|
|
// [3][2] [2][2]
|
|
}
|
|
}
|
|
|
|
/// Control how this [`Camera`] outputs once rendering is completed.
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum CameraOutputMode {
|
|
/// Writes the camera output to configured render target.
|
|
Write {
|
|
/// The blend state that will be used by the pipeline that writes the intermediate render textures to the final render target texture.
|
|
/// If not set, the output will be written as-is, ignoring `clear_color` and the existing data in the final render target texture.
|
|
blend_state: Option<BlendState>,
|
|
/// The clear color operation to perform on the final render target texture.
|
|
clear_color: ClearColorConfig,
|
|
},
|
|
/// Skips writing the camera output to the configured render target. The output will remain in the
|
|
/// Render Target's "intermediate" textures, which a camera with a higher order should write to the render target
|
|
/// using [`CameraOutputMode::Write`]. The "skip" mode can easily prevent render results from being displayed, or cause
|
|
/// them to be lost. Only use this if you know what you are doing!
|
|
/// In camera setups with multiple active cameras rendering to the same [`RenderTarget`], the Skip mode can be used to remove
|
|
/// unnecessary / redundant writes to the final output texture, removing unnecessary render passes.
|
|
Skip,
|
|
}
|
|
|
|
impl Default for CameraOutputMode {
|
|
fn default() -> Self {
|
|
CameraOutputMode::Write {
|
|
blend_state: None,
|
|
clear_color: ClearColorConfig::Default,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Configures the [`RenderGraph`](crate::render_graph::RenderGraph) name assigned to be run for a given [`Camera`] entity.
|
|
#[derive(Component, Debug, Deref, DerefMut, Reflect, Clone)]
|
|
#[reflect(opaque)]
|
|
#[reflect(Component, Debug, Clone)]
|
|
pub struct CameraRenderGraph(InternedRenderSubGraph);
|
|
|
|
impl CameraRenderGraph {
|
|
/// Creates a new [`CameraRenderGraph`] from any string-like type.
|
|
#[inline]
|
|
pub fn new<T: RenderSubGraph>(name: T) -> Self {
|
|
Self(name.intern())
|
|
}
|
|
|
|
/// Sets the graph name.
|
|
#[inline]
|
|
pub fn set<T: RenderSubGraph>(&mut self, name: T) {
|
|
self.0 = name.intern();
|
|
}
|
|
}
|
|
|
|
/// The "target" that a [`Camera`] will render to. For example, this could be a [`Window`]
|
|
/// swapchain or an [`Image`].
|
|
#[derive(Debug, Clone, Reflect, From)]
|
|
#[reflect(Clone)]
|
|
pub enum RenderTarget {
|
|
/// Window to which the camera's view is rendered.
|
|
Window(WindowRef),
|
|
/// Image to which the camera's view is rendered.
|
|
Image(ImageRenderTarget),
|
|
/// Texture View to which the camera's view is rendered.
|
|
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
|
|
TextureView(ManualTextureViewHandle),
|
|
}
|
|
|
|
/// A render target that renders to an [`Image`].
|
|
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
#[reflect(Clone, PartialEq, Hash)]
|
|
pub struct ImageRenderTarget {
|
|
/// The image to render to.
|
|
pub handle: Handle<Image>,
|
|
/// The scale factor of the render target image, corresponding to the scale
|
|
/// factor for a window target. This should almost always be 1.0.
|
|
pub scale_factor: FloatOrd,
|
|
}
|
|
|
|
impl From<Handle<Image>> for RenderTarget {
|
|
fn from(handle: Handle<Image>) -> Self {
|
|
Self::Image(handle.into())
|
|
}
|
|
}
|
|
|
|
impl From<Handle<Image>> for ImageRenderTarget {
|
|
fn from(handle: Handle<Image>) -> Self {
|
|
Self {
|
|
handle,
|
|
scale_factor: FloatOrd(1.0),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for RenderTarget {
|
|
fn default() -> Self {
|
|
Self::Window(Default::default())
|
|
}
|
|
}
|
|
|
|
/// Normalized version of the render target.
|
|
///
|
|
/// Once we have this we shouldn't need to resolve it down anymore.
|
|
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord, From)]
|
|
#[reflect(Clone, PartialEq, Hash)]
|
|
pub enum NormalizedRenderTarget {
|
|
/// Window to which the camera's view is rendered.
|
|
Window(NormalizedWindowRef),
|
|
/// Image to which the camera's view is rendered.
|
|
Image(ImageRenderTarget),
|
|
/// Texture View to which the camera's view is rendered.
|
|
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
|
|
TextureView(ManualTextureViewHandle),
|
|
}
|
|
|
|
impl RenderTarget {
|
|
/// Normalize the render target down to a more concrete value, mostly used for equality comparisons.
|
|
pub fn normalize(&self, primary_window: Option<Entity>) -> Option<NormalizedRenderTarget> {
|
|
match self {
|
|
RenderTarget::Window(window_ref) => window_ref
|
|
.normalize(primary_window)
|
|
.map(NormalizedRenderTarget::Window),
|
|
RenderTarget::Image(handle) => Some(NormalizedRenderTarget::Image(handle.clone())),
|
|
RenderTarget::TextureView(id) => Some(NormalizedRenderTarget::TextureView(*id)),
|
|
}
|
|
}
|
|
|
|
/// Get a handle to the render target's image,
|
|
/// or `None` if the render target is another variant.
|
|
pub fn as_image(&self) -> Option<&Handle<Image>> {
|
|
if let Self::Image(image_target) = self {
|
|
Some(&image_target.handle)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl NormalizedRenderTarget {
|
|
pub fn get_texture_view<'a>(
|
|
&self,
|
|
windows: &'a ExtractedWindows,
|
|
images: &'a RenderAssets<GpuImage>,
|
|
manual_texture_views: &'a ManualTextureViews,
|
|
) -> Option<&'a TextureView> {
|
|
match self {
|
|
NormalizedRenderTarget::Window(window_ref) => windows
|
|
.get(&window_ref.entity())
|
|
.and_then(|window| window.swap_chain_texture_view.as_ref()),
|
|
NormalizedRenderTarget::Image(image_target) => images
|
|
.get(&image_target.handle)
|
|
.map(|image| &image.texture_view),
|
|
NormalizedRenderTarget::TextureView(id) => {
|
|
manual_texture_views.get(id).map(|tex| &tex.texture_view)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Retrieves the [`TextureFormat`] of this render target, if it exists.
|
|
pub fn get_texture_format<'a>(
|
|
&self,
|
|
windows: &'a ExtractedWindows,
|
|
images: &'a RenderAssets<GpuImage>,
|
|
manual_texture_views: &'a ManualTextureViews,
|
|
) -> Option<TextureFormat> {
|
|
match self {
|
|
NormalizedRenderTarget::Window(window_ref) => windows
|
|
.get(&window_ref.entity())
|
|
.and_then(|window| window.swap_chain_texture_format),
|
|
NormalizedRenderTarget::Image(image_target) => images
|
|
.get(&image_target.handle)
|
|
.map(|image| image.texture_format),
|
|
NormalizedRenderTarget::TextureView(id) => {
|
|
manual_texture_views.get(id).map(|tex| tex.format)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn get_render_target_info<'a>(
|
|
&self,
|
|
resolutions: impl IntoIterator<Item = (Entity, &'a Window)>,
|
|
images: &Assets<Image>,
|
|
manual_texture_views: &ManualTextureViews,
|
|
) -> Option<RenderTargetInfo> {
|
|
match self {
|
|
NormalizedRenderTarget::Window(window_ref) => resolutions
|
|
.into_iter()
|
|
.find(|(entity, _)| *entity == window_ref.entity())
|
|
.map(|(_, window)| RenderTargetInfo {
|
|
physical_size: window.physical_size(),
|
|
scale_factor: window.resolution.scale_factor(),
|
|
}),
|
|
NormalizedRenderTarget::Image(image_target) => {
|
|
let image = images.get(&image_target.handle)?;
|
|
Some(RenderTargetInfo {
|
|
physical_size: image.size(),
|
|
scale_factor: image_target.scale_factor.0,
|
|
})
|
|
}
|
|
NormalizedRenderTarget::TextureView(id) => {
|
|
manual_texture_views.get(id).map(|tex| RenderTargetInfo {
|
|
physical_size: tex.size,
|
|
scale_factor: 1.0,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this render target is contained in the given changed windows or images.
|
|
fn is_changed(
|
|
&self,
|
|
changed_window_ids: &HashSet<Entity>,
|
|
changed_image_handles: &HashSet<&AssetId<Image>>,
|
|
) -> bool {
|
|
match self {
|
|
NormalizedRenderTarget::Window(window_ref) => {
|
|
changed_window_ids.contains(&window_ref.entity())
|
|
}
|
|
NormalizedRenderTarget::Image(image_target) => {
|
|
changed_image_handles.contains(&image_target.handle.id())
|
|
}
|
|
NormalizedRenderTarget::TextureView(_) => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// System in charge of updating a [`Camera`] when its window or projection changes.
|
|
///
|
|
/// The system detects window creation, resize, and scale factor change events to update the camera
|
|
/// [`Projection`] if needed.
|
|
///
|
|
/// ## World Resources
|
|
///
|
|
/// [`Res<Assets<Image>>`](Assets<Image>) -- For cameras that render to an image, this resource is used to
|
|
/// inspect information about the render target. This system will not access any other image assets.
|
|
///
|
|
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
|
|
/// [`PerspectiveProjection`]: crate::camera::PerspectiveProjection
|
|
pub fn camera_system(
|
|
mut window_resized_events: EventReader<WindowResized>,
|
|
mut window_created_events: EventReader<WindowCreated>,
|
|
mut window_scale_factor_changed_events: EventReader<WindowScaleFactorChanged>,
|
|
mut image_asset_events: EventReader<AssetEvent<Image>>,
|
|
primary_window: Query<Entity, With<PrimaryWindow>>,
|
|
windows: Query<(Entity, &Window)>,
|
|
images: Res<Assets<Image>>,
|
|
manual_texture_views: Res<ManualTextureViews>,
|
|
mut cameras: Query<(&mut Camera, &mut Projection)>,
|
|
) {
|
|
let primary_window = primary_window.iter().next();
|
|
|
|
let mut changed_window_ids = <HashSet<_>>::default();
|
|
changed_window_ids.extend(window_created_events.read().map(|event| event.window));
|
|
changed_window_ids.extend(window_resized_events.read().map(|event| event.window));
|
|
let scale_factor_changed_window_ids: HashSet<_> = window_scale_factor_changed_events
|
|
.read()
|
|
.map(|event| event.window)
|
|
.collect();
|
|
changed_window_ids.extend(scale_factor_changed_window_ids.clone());
|
|
|
|
let changed_image_handles: HashSet<&AssetId<Image>> = image_asset_events
|
|
.read()
|
|
.filter_map(|event| match event {
|
|
AssetEvent::Modified { id } | AssetEvent::Added { id } => Some(id),
|
|
_ => None,
|
|
})
|
|
.collect();
|
|
|
|
for (mut camera, mut camera_projection) in &mut cameras {
|
|
let mut viewport_size = camera
|
|
.viewport
|
|
.as_ref()
|
|
.map(|viewport| viewport.physical_size);
|
|
|
|
if let Some(normalized_target) = camera.target.normalize(primary_window) {
|
|
if normalized_target.is_changed(&changed_window_ids, &changed_image_handles)
|
|
|| camera.is_added()
|
|
|| camera_projection.is_changed()
|
|
|| camera.computed.old_viewport_size != viewport_size
|
|
|| camera.computed.old_sub_camera_view != camera.sub_camera_view
|
|
{
|
|
let new_computed_target_info = normalized_target.get_render_target_info(
|
|
windows,
|
|
&images,
|
|
&manual_texture_views,
|
|
);
|
|
// Check for the scale factor changing, and resize the viewport if needed.
|
|
// This can happen when the window is moved between monitors with different DPIs.
|
|
// Without this, the viewport will take a smaller portion of the window moved to
|
|
// a higher DPI monitor.
|
|
if normalized_target
|
|
.is_changed(&scale_factor_changed_window_ids, &HashSet::default())
|
|
{
|
|
if let (Some(new_scale_factor), Some(old_scale_factor)) = (
|
|
new_computed_target_info
|
|
.as_ref()
|
|
.map(|info| info.scale_factor),
|
|
camera
|
|
.computed
|
|
.target_info
|
|
.as_ref()
|
|
.map(|info| info.scale_factor),
|
|
) {
|
|
let resize_factor = new_scale_factor / old_scale_factor;
|
|
if let Some(ref mut viewport) = camera.viewport {
|
|
let resize = |vec: UVec2| (vec.as_vec2() * resize_factor).as_uvec2();
|
|
viewport.physical_position = resize(viewport.physical_position);
|
|
viewport.physical_size = resize(viewport.physical_size);
|
|
viewport_size = Some(viewport.physical_size);
|
|
}
|
|
}
|
|
}
|
|
// This check is needed because when changing WindowMode to Fullscreen, the viewport may have invalid
|
|
// arguments due to a sudden change on the window size to a lower value.
|
|
// If the size of the window is lower, the viewport will match that lower value.
|
|
if let Some(viewport) = &mut camera.viewport {
|
|
let target_info = &new_computed_target_info;
|
|
if let Some(target) = target_info {
|
|
viewport.clamp_to_size(target.physical_size);
|
|
}
|
|
}
|
|
camera.computed.target_info = new_computed_target_info;
|
|
if let Some(size) = camera.logical_viewport_size() {
|
|
if size.x != 0.0 && size.y != 0.0 {
|
|
camera_projection.update(size.x, size.y);
|
|
camera.computed.clip_from_view = match &camera.sub_camera_view {
|
|
Some(sub_view) => {
|
|
camera_projection.get_clip_from_view_for_sub(sub_view)
|
|
}
|
|
None => camera_projection.get_clip_from_view(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if camera.computed.old_viewport_size != viewport_size {
|
|
camera.computed.old_viewport_size = viewport_size;
|
|
}
|
|
|
|
if camera.computed.old_sub_camera_view != camera.sub_camera_view {
|
|
camera.computed.old_sub_camera_view = camera.sub_camera_view;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This component lets you control the [`TextureUsages`] field of the main texture generated for the camera
|
|
#[derive(Component, ExtractComponent, Clone, Copy, Reflect)]
|
|
#[reflect(opaque)]
|
|
#[reflect(Component, Default, Clone)]
|
|
pub struct CameraMainTextureUsages(pub TextureUsages);
|
|
|
|
impl Default for CameraMainTextureUsages {
|
|
fn default() -> Self {
|
|
Self(
|
|
TextureUsages::RENDER_ATTACHMENT
|
|
| TextureUsages::TEXTURE_BINDING
|
|
| TextureUsages::COPY_SRC,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl CameraMainTextureUsages {
|
|
pub fn with(mut self, usages: TextureUsages) -> Self {
|
|
self.0 |= usages;
|
|
self
|
|
}
|
|
}
|
|
|
|
#[derive(Component, Debug)]
|
|
pub struct ExtractedCamera {
|
|
pub target: Option<NormalizedRenderTarget>,
|
|
pub physical_viewport_size: Option<UVec2>,
|
|
pub physical_target_size: Option<UVec2>,
|
|
pub viewport: Option<Viewport>,
|
|
pub render_graph: InternedRenderSubGraph,
|
|
pub order: isize,
|
|
pub output_mode: CameraOutputMode,
|
|
pub msaa_writeback: bool,
|
|
pub clear_color: ClearColorConfig,
|
|
pub sorted_camera_index_for_target: usize,
|
|
pub exposure: f32,
|
|
pub hdr: bool,
|
|
}
|
|
|
|
pub fn extract_cameras(
|
|
mut commands: Commands,
|
|
query: Extract<
|
|
Query<(
|
|
Entity,
|
|
RenderEntity,
|
|
&Camera,
|
|
&CameraRenderGraph,
|
|
&GlobalTransform,
|
|
&VisibleEntities,
|
|
&Frustum,
|
|
Has<Hdr>,
|
|
Option<&ColorGrading>,
|
|
Option<&Exposure>,
|
|
Option<&TemporalJitter>,
|
|
Option<&MipBias>,
|
|
Option<&RenderLayers>,
|
|
Option<&Projection>,
|
|
Has<NoIndirectDrawing>,
|
|
)>,
|
|
>,
|
|
primary_window: Extract<Query<Entity, With<PrimaryWindow>>>,
|
|
gpu_preprocessing_support: Res<GpuPreprocessingSupport>,
|
|
mapper: Extract<Query<&RenderEntity>>,
|
|
) {
|
|
let primary_window = primary_window.iter().next();
|
|
for (
|
|
main_entity,
|
|
render_entity,
|
|
camera,
|
|
camera_render_graph,
|
|
transform,
|
|
visible_entities,
|
|
frustum,
|
|
hdr,
|
|
color_grading,
|
|
exposure,
|
|
temporal_jitter,
|
|
mip_bias,
|
|
render_layers,
|
|
projection,
|
|
no_indirect_drawing,
|
|
) in query.iter()
|
|
{
|
|
if !camera.is_active {
|
|
commands.entity(render_entity).remove::<(
|
|
ExtractedCamera,
|
|
ExtractedView,
|
|
RenderVisibleEntities,
|
|
TemporalJitter,
|
|
MipBias,
|
|
RenderLayers,
|
|
Projection,
|
|
NoIndirectDrawing,
|
|
ViewUniformOffset,
|
|
)>();
|
|
continue;
|
|
}
|
|
|
|
let color_grading = color_grading.unwrap_or(&ColorGrading::default()).clone();
|
|
|
|
if let (
|
|
Some(URect {
|
|
min: viewport_origin,
|
|
..
|
|
}),
|
|
Some(viewport_size),
|
|
Some(target_size),
|
|
) = (
|
|
camera.physical_viewport_rect(),
|
|
camera.physical_viewport_size(),
|
|
camera.physical_target_size(),
|
|
) {
|
|
if target_size.x == 0 || target_size.y == 0 {
|
|
continue;
|
|
}
|
|
|
|
let render_visible_entities = RenderVisibleEntities {
|
|
entities: visible_entities
|
|
.entities
|
|
.iter()
|
|
.map(|(type_id, entities)| {
|
|
let entities = entities
|
|
.iter()
|
|
.map(|entity| {
|
|
let render_entity = mapper
|
|
.get(*entity)
|
|
.cloned()
|
|
.map(|entity| entity.id())
|
|
.unwrap_or(Entity::PLACEHOLDER);
|
|
(render_entity, (*entity).into())
|
|
})
|
|
.collect();
|
|
(*type_id, entities)
|
|
})
|
|
.collect(),
|
|
};
|
|
|
|
let mut commands = commands.entity(render_entity);
|
|
commands.insert((
|
|
ExtractedCamera {
|
|
target: camera.target.normalize(primary_window),
|
|
viewport: camera.viewport.clone(),
|
|
physical_viewport_size: Some(viewport_size),
|
|
physical_target_size: Some(target_size),
|
|
render_graph: camera_render_graph.0,
|
|
order: camera.order,
|
|
output_mode: camera.output_mode,
|
|
msaa_writeback: camera.msaa_writeback,
|
|
clear_color: camera.clear_color,
|
|
// this will be set in sort_cameras
|
|
sorted_camera_index_for_target: 0,
|
|
exposure: exposure
|
|
.map(Exposure::exposure)
|
|
.unwrap_or_else(|| Exposure::default().exposure()),
|
|
hdr,
|
|
},
|
|
ExtractedView {
|
|
retained_view_entity: RetainedViewEntity::new(main_entity.into(), None, 0),
|
|
clip_from_view: camera.clip_from_view(),
|
|
world_from_view: *transform,
|
|
clip_from_world: None,
|
|
hdr,
|
|
viewport: UVec4::new(
|
|
viewport_origin.x,
|
|
viewport_origin.y,
|
|
viewport_size.x,
|
|
viewport_size.y,
|
|
),
|
|
color_grading,
|
|
},
|
|
render_visible_entities,
|
|
*frustum,
|
|
));
|
|
|
|
if let Some(temporal_jitter) = temporal_jitter {
|
|
commands.insert(temporal_jitter.clone());
|
|
} else {
|
|
commands.remove::<TemporalJitter>();
|
|
}
|
|
|
|
if let Some(mip_bias) = mip_bias {
|
|
commands.insert(mip_bias.clone());
|
|
} else {
|
|
commands.remove::<MipBias>();
|
|
}
|
|
|
|
if let Some(render_layers) = render_layers {
|
|
commands.insert(render_layers.clone());
|
|
} else {
|
|
commands.remove::<RenderLayers>();
|
|
}
|
|
|
|
if let Some(perspective) = projection {
|
|
commands.insert(perspective.clone());
|
|
} else {
|
|
commands.remove::<Projection>();
|
|
}
|
|
|
|
if no_indirect_drawing
|
|
|| !matches!(
|
|
gpu_preprocessing_support.max_supported_mode,
|
|
GpuPreprocessingMode::Culling
|
|
)
|
|
{
|
|
commands.insert(NoIndirectDrawing);
|
|
} else {
|
|
commands.remove::<NoIndirectDrawing>();
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Cameras sorted by their order field. This is updated in the [`sort_cameras`] system.
|
|
#[derive(Resource, Default)]
|
|
pub struct SortedCameras(pub Vec<SortedCamera>);
|
|
|
|
pub struct SortedCamera {
|
|
pub entity: Entity,
|
|
pub order: isize,
|
|
pub target: Option<NormalizedRenderTarget>,
|
|
pub hdr: bool,
|
|
}
|
|
|
|
pub fn sort_cameras(
|
|
mut sorted_cameras: ResMut<SortedCameras>,
|
|
mut cameras: Query<(Entity, &mut ExtractedCamera)>,
|
|
) {
|
|
sorted_cameras.0.clear();
|
|
for (entity, camera) in cameras.iter() {
|
|
sorted_cameras.0.push(SortedCamera {
|
|
entity,
|
|
order: camera.order,
|
|
target: camera.target.clone(),
|
|
hdr: camera.hdr,
|
|
});
|
|
}
|
|
// sort by order and ensure within an order, RenderTargets of the same type are packed together
|
|
sorted_cameras
|
|
.0
|
|
.sort_by(|c1, c2| (c1.order, &c1.target).cmp(&(c2.order, &c2.target)));
|
|
let mut previous_order_target = None;
|
|
let mut ambiguities = <HashSet<_>>::default();
|
|
let mut target_counts = <HashMap<_, _>>::default();
|
|
for sorted_camera in &mut sorted_cameras.0 {
|
|
let new_order_target = (sorted_camera.order, sorted_camera.target.clone());
|
|
if let Some(previous_order_target) = previous_order_target {
|
|
if previous_order_target == new_order_target {
|
|
ambiguities.insert(new_order_target.clone());
|
|
}
|
|
}
|
|
if let Some(target) = &sorted_camera.target {
|
|
let count = target_counts
|
|
.entry((target.clone(), sorted_camera.hdr))
|
|
.or_insert(0usize);
|
|
let (_, mut camera) = cameras.get_mut(sorted_camera.entity).unwrap();
|
|
camera.sorted_camera_index_for_target = *count;
|
|
*count += 1;
|
|
}
|
|
previous_order_target = Some(new_order_target);
|
|
}
|
|
|
|
if !ambiguities.is_empty() {
|
|
warn!(
|
|
"Camera order ambiguities detected for active cameras with the following priorities: {:?}. \
|
|
To fix this, ensure there is exactly one Camera entity spawned with a given order for a given RenderTarget. \
|
|
Ambiguities should be resolved because either (1) multiple active cameras were spawned accidentally, which will \
|
|
result in rendering multiple instances of the scene or (2) for cases where multiple active cameras is intentional, \
|
|
ambiguities could result in unpredictable render results.",
|
|
ambiguities
|
|
);
|
|
}
|
|
}
|
|
|
|
/// A subpixel offset to jitter a perspective camera's frustum by.
|
|
///
|
|
/// Useful for temporal rendering techniques.
|
|
///
|
|
/// Do not use with [`OrthographicProjection`].
|
|
///
|
|
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
|
|
#[derive(Component, Clone, Default, Reflect)]
|
|
#[reflect(Default, Component, Clone)]
|
|
pub struct TemporalJitter {
|
|
/// Offset is in range [-0.5, 0.5].
|
|
pub offset: Vec2,
|
|
}
|
|
|
|
impl TemporalJitter {
|
|
pub fn jitter_projection(&self, clip_from_view: &mut Mat4, view_size: Vec2) {
|
|
if clip_from_view.w_axis.w == 1.0 {
|
|
warn!(
|
|
"TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
|
|
);
|
|
return;
|
|
}
|
|
|
|
// https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/d7531ae47d8b36a5d4025663e731a47a38be882f/docs/techniques/media/super-resolution-temporal/jitter-space.svg
|
|
let jitter = (self.offset * vec2(2.0, -2.0)) / view_size;
|
|
|
|
clip_from_view.z_axis.x += jitter.x;
|
|
clip_from_view.z_axis.y += jitter.y;
|
|
}
|
|
}
|
|
|
|
/// Camera component specifying a mip bias to apply when sampling from material textures.
|
|
///
|
|
/// Often used in conjunction with antialiasing post-process effects to reduce textures blurriness.
|
|
#[derive(Component, Reflect, Clone)]
|
|
#[reflect(Default, Component)]
|
|
pub struct MipBias(pub f32);
|
|
|
|
/// Override the resolution a 3d camera's main pass is rendered at.
|
|
///
|
|
/// Does not affect post processing.
|
|
///
|
|
/// ## Usage
|
|
///
|
|
/// * Insert this component on a 3d camera entity in the render world.
|
|
/// * The resolution override must be smaller than the camera's viewport size.
|
|
/// * The resolution override is specified in physical pixels.
|
|
#[derive(Component, Reflect, Deref)]
|
|
#[reflect(Component)]
|
|
pub struct MainPassResolutionOverride(pub UVec2);
|
|
|
|
impl Default for MipBias {
|
|
fn default() -> Self {
|
|
Self(-1.0)
|
|
}
|
|
}
|