 d70595b667
			
		
	
	
		d70595b667
		
			
		
	
	
	
	
		
			
			# Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
		
			
				
	
	
		
			653 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			653 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Isometry types for expressing rigid motions in two and three dimensions.
 | |
| 
 | |
| use crate::{Affine2, Affine3, Affine3A, Dir2, Dir3, Mat3, Mat3A, Quat, Rot2, Vec2, Vec3, Vec3A};
 | |
| use core::ops::Mul;
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| use approx::{AbsDiffEq, RelativeEq, UlpsEq};
 | |
| 
 | |
| #[cfg(feature = "bevy_reflect")]
 | |
| use bevy_reflect::{std_traits::ReflectDefault, Reflect};
 | |
| #[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
 | |
| use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
 | |
| 
 | |
| /// An isometry in two dimensions, representing a rotation followed by a translation.
 | |
| /// This can often be useful for expressing relative positions and transformations from one position to another.
 | |
| ///
 | |
| /// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
 | |
| /// and belongs to the special [Euclidean group] SE(2). This includes translation and rotation, but excludes reflection.
 | |
| ///
 | |
| /// For the three-dimensional version, see [`Isometry3d`].
 | |
| ///
 | |
| /// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
 | |
| ///
 | |
| /// # Example
 | |
| ///
 | |
| /// Isometries can be created from a given translation and rotation:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry2d, Rot2, Vec2};
 | |
| /// #
 | |
| /// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
 | |
| /// ```
 | |
| ///
 | |
| /// Or from separate parts:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry2d, Rot2, Vec2};
 | |
| /// #
 | |
| /// let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
 | |
| /// let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
 | |
| /// ```
 | |
| ///
 | |
| /// The isometries can be used to transform points:
 | |
| ///
 | |
| /// ```
 | |
| /// # use approx::assert_abs_diff_eq;
 | |
| /// # use bevy_math::{Isometry2d, Rot2, Vec2};
 | |
| /// #
 | |
| /// let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
 | |
| /// let point = Vec2::new(4.0, 4.0);
 | |
| ///
 | |
| /// // These are equivalent
 | |
| /// let result = iso.transform_point(point);
 | |
| /// let result = iso * point;
 | |
| ///
 | |
| /// assert_eq!(result, Vec2::new(-2.0, 5.0));
 | |
| /// ```
 | |
| ///
 | |
| /// Isometries can also be composed together:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry2d, Rot2, Vec2};
 | |
| /// #
 | |
| /// # let iso = Isometry2d::new(Vec2::new(2.0, 1.0), Rot2::degrees(90.0));
 | |
| /// # let iso1 = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
 | |
| /// # let iso2 = Isometry2d::from_rotation(Rot2::degrees(90.0));
 | |
| /// #
 | |
| /// assert_eq!(iso1 * iso2, iso);
 | |
| /// ```
 | |
| ///
 | |
| /// One common operation is to compute an isometry representing the relative positions of two objects
 | |
| /// for things like intersection tests. This can be done with an inverse transformation:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry2d, Rot2, Vec2};
 | |
| /// #
 | |
| /// let circle_iso = Isometry2d::from_translation(Vec2::new(2.0, 1.0));
 | |
| /// let rectangle_iso = Isometry2d::from_rotation(Rot2::degrees(90.0));
 | |
| ///
 | |
| /// // Compute the relative position and orientation between the two shapes
 | |
| /// let relative_iso = circle_iso.inverse() * rectangle_iso;
 | |
| ///
 | |
| /// // Or alternatively, to skip an extra rotation operation:
 | |
| /// let relative_iso = circle_iso.inverse_mul(rectangle_iso);
 | |
| /// ```
 | |
| #[derive(Copy, Clone, Default, Debug, PartialEq)]
 | |
| #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
 | |
| #[cfg_attr(
 | |
|     feature = "bevy_reflect",
 | |
|     derive(Reflect),
 | |
|     reflect(Debug, PartialEq, Default)
 | |
| )]
 | |
| #[cfg_attr(
 | |
|     all(feature = "serialize", feature = "bevy_reflect"),
 | |
|     reflect(Serialize, Deserialize)
 | |
| )]
 | |
| pub struct Isometry2d {
 | |
|     /// The rotational part of a two-dimensional isometry.
 | |
|     pub rotation: Rot2,
 | |
|     /// The translational part of a two-dimensional isometry.
 | |
|     pub translation: Vec2,
 | |
| }
 | |
| 
 | |
| impl Isometry2d {
 | |
|     /// The identity isometry which represents the rigid motion of not doing anything.
 | |
|     pub const IDENTITY: Self = Isometry2d {
 | |
|         rotation: Rot2::IDENTITY,
 | |
|         translation: Vec2::ZERO,
 | |
|     };
 | |
| 
 | |
|     /// Create a two-dimensional isometry from a rotation and a translation.
 | |
|     #[inline]
 | |
|     pub fn new(translation: Vec2, rotation: Rot2) -> Self {
 | |
|         Isometry2d {
 | |
|             rotation,
 | |
|             translation,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a two-dimensional isometry from a rotation.
 | |
|     #[inline]
 | |
|     pub fn from_rotation(rotation: Rot2) -> Self {
 | |
|         Isometry2d {
 | |
|             rotation,
 | |
|             translation: Vec2::ZERO,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a two-dimensional isometry from a translation.
 | |
|     #[inline]
 | |
|     pub fn from_translation(translation: Vec2) -> Self {
 | |
|         Isometry2d {
 | |
|             rotation: Rot2::IDENTITY,
 | |
|             translation,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a two-dimensional isometry from a translation with the given `x` and `y` components.
 | |
|     #[inline]
 | |
|     pub fn from_xy(x: f32, y: f32) -> Self {
 | |
|         Isometry2d {
 | |
|             rotation: Rot2::IDENTITY,
 | |
|             translation: Vec2::new(x, y),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// The inverse isometry that undoes this one.
 | |
|     #[inline]
 | |
|     pub fn inverse(&self) -> Self {
 | |
|         let inv_rot = self.rotation.inverse();
 | |
|         Isometry2d {
 | |
|             rotation: inv_rot,
 | |
|             translation: inv_rot * -self.translation,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
 | |
|     ///
 | |
|     /// If the same isometry is used multiple times, it is more efficient to instead compute
 | |
|     /// the inverse once and use that for each transformation.
 | |
|     #[inline]
 | |
|     pub fn inverse_mul(&self, rhs: Self) -> Self {
 | |
|         let inv_rot = self.rotation.inverse();
 | |
|         let delta_translation = rhs.translation - self.translation;
 | |
|         Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
 | |
|     }
 | |
| 
 | |
|     /// Transform a point by rotating and translating it using this isometry.
 | |
|     #[inline]
 | |
|     pub fn transform_point(&self, point: Vec2) -> Vec2 {
 | |
|         self.rotation * point + self.translation
 | |
|     }
 | |
| 
 | |
|     /// Transform a point by rotating and translating it using the inverse of this isometry.
 | |
|     ///
 | |
|     /// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
 | |
|     /// If the same isometry is used multiple times, it is more efficient to instead compute
 | |
|     /// the inverse once and use that for each transformation.
 | |
|     #[inline]
 | |
|     pub fn inverse_transform_point(&self, point: Vec2) -> Vec2 {
 | |
|         self.rotation.inverse() * (point - self.translation)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl From<Isometry2d> for Affine2 {
 | |
|     #[inline]
 | |
|     fn from(iso: Isometry2d) -> Self {
 | |
|         Affine2 {
 | |
|             matrix2: iso.rotation.into(),
 | |
|             translation: iso.translation,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul for Isometry2d {
 | |
|     type Output = Self;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Self) -> Self::Output {
 | |
|         Isometry2d {
 | |
|             rotation: self.rotation * rhs.rotation,
 | |
|             translation: self.rotation * rhs.translation + self.translation,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul<Vec2> for Isometry2d {
 | |
|     type Output = Vec2;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Vec2) -> Self::Output {
 | |
|         self.transform_point(rhs)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul<Dir2> for Isometry2d {
 | |
|     type Output = Dir2;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Dir2) -> Self::Output {
 | |
|         self.rotation * rhs
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl AbsDiffEq for Isometry2d {
 | |
|     type Epsilon = <f32 as AbsDiffEq>::Epsilon;
 | |
| 
 | |
|     fn default_epsilon() -> Self::Epsilon {
 | |
|         f32::default_epsilon()
 | |
|     }
 | |
| 
 | |
|     fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
 | |
|         self.rotation.abs_diff_eq(&other.rotation, epsilon)
 | |
|             && self.translation.abs_diff_eq(other.translation, epsilon)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl RelativeEq for Isometry2d {
 | |
|     fn default_max_relative() -> Self::Epsilon {
 | |
|         Self::default_epsilon()
 | |
|     }
 | |
| 
 | |
|     fn relative_eq(
 | |
|         &self,
 | |
|         other: &Self,
 | |
|         epsilon: Self::Epsilon,
 | |
|         max_relative: Self::Epsilon,
 | |
|     ) -> bool {
 | |
|         self.rotation
 | |
|             .relative_eq(&other.rotation, epsilon, max_relative)
 | |
|             && self
 | |
|                 .translation
 | |
|                 .relative_eq(&other.translation, epsilon, max_relative)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl UlpsEq for Isometry2d {
 | |
|     fn default_max_ulps() -> u32 {
 | |
|         4
 | |
|     }
 | |
| 
 | |
|     fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
 | |
|         self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
 | |
|             && self
 | |
|                 .translation
 | |
|                 .ulps_eq(&other.translation, epsilon, max_ulps)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An isometry in three dimensions, representing a rotation followed by a translation.
 | |
| /// This can often be useful for expressing relative positions and transformations from one position to another.
 | |
| ///
 | |
| /// In particular, this type represents a distance-preserving transformation known as a *rigid motion* or a *direct motion*,
 | |
| /// and belongs to the special [Euclidean group] SE(3). This includes translation and rotation, but excludes reflection.
 | |
| ///
 | |
| /// For the two-dimensional version, see [`Isometry2d`].
 | |
| ///
 | |
| /// [Euclidean group]: https://en.wikipedia.org/wiki/Euclidean_group
 | |
| ///
 | |
| /// # Example
 | |
| ///
 | |
| /// Isometries can be created from a given translation and rotation:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry3d, Quat, Vec3};
 | |
| /// # use std::f32::consts::FRAC_PI_2;
 | |
| /// #
 | |
| /// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
 | |
| /// ```
 | |
| ///
 | |
| /// Or from separate parts:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry3d, Quat, Vec3};
 | |
| /// # use std::f32::consts::FRAC_PI_2;
 | |
| /// #
 | |
| /// let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
 | |
| /// let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
 | |
| /// ```
 | |
| ///
 | |
| /// The isometries can be used to transform points:
 | |
| ///
 | |
| /// ```
 | |
| /// # use approx::assert_relative_eq;
 | |
| /// # use bevy_math::{Isometry3d, Quat, Vec3};
 | |
| /// # use std::f32::consts::FRAC_PI_2;
 | |
| /// #
 | |
| /// let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
 | |
| /// let point = Vec3::new(4.0, 4.0, 4.0);
 | |
| ///
 | |
| /// // These are equivalent
 | |
| /// let result = iso.transform_point(point);
 | |
| /// let result = iso * point;
 | |
| ///
 | |
| /// assert_relative_eq!(result, Vec3::new(-2.0, 5.0, 7.0));
 | |
| /// ```
 | |
| ///
 | |
| /// Isometries can also be composed together:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry3d, Quat, Vec3};
 | |
| /// # use std::f32::consts::FRAC_PI_2;
 | |
| /// #
 | |
| /// # let iso = Isometry3d::new(Vec3::new(2.0, 1.0, 3.0), Quat::from_rotation_z(FRAC_PI_2));
 | |
| /// # let iso1 = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
 | |
| /// # let iso2 = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
 | |
| /// #
 | |
| /// assert_eq!(iso1 * iso2, iso);
 | |
| /// ```
 | |
| ///
 | |
| /// One common operation is to compute an isometry representing the relative positions of two objects
 | |
| /// for things like intersection tests. This can be done with an inverse transformation:
 | |
| ///
 | |
| /// ```
 | |
| /// # use bevy_math::{Isometry3d, Quat, Vec3};
 | |
| /// # use std::f32::consts::FRAC_PI_2;
 | |
| /// #
 | |
| /// let sphere_iso = Isometry3d::from_translation(Vec3::new(2.0, 1.0, 3.0));
 | |
| /// let cuboid_iso = Isometry3d::from_rotation(Quat::from_rotation_z(FRAC_PI_2));
 | |
| ///
 | |
| /// // Compute the relative position and orientation between the two shapes
 | |
| /// let relative_iso = sphere_iso.inverse() * cuboid_iso;
 | |
| ///
 | |
| /// // Or alternatively, to skip an extra rotation operation:
 | |
| /// let relative_iso = sphere_iso.inverse_mul(cuboid_iso);
 | |
| /// ```
 | |
| #[derive(Copy, Clone, Default, Debug, PartialEq)]
 | |
| #[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
 | |
| #[cfg_attr(
 | |
|     feature = "bevy_reflect",
 | |
|     derive(Reflect),
 | |
|     reflect(Debug, PartialEq, Default)
 | |
| )]
 | |
| #[cfg_attr(
 | |
|     all(feature = "serialize", feature = "bevy_reflect"),
 | |
|     reflect(Serialize, Deserialize)
 | |
| )]
 | |
| pub struct Isometry3d {
 | |
|     /// The rotational part of a three-dimensional isometry.
 | |
|     pub rotation: Quat,
 | |
|     /// The translational part of a three-dimensional isometry.
 | |
|     pub translation: Vec3A,
 | |
| }
 | |
| 
 | |
| impl Isometry3d {
 | |
|     /// The identity isometry which represents the rigid motion of not doing anything.
 | |
|     pub const IDENTITY: Self = Isometry3d {
 | |
|         rotation: Quat::IDENTITY,
 | |
|         translation: Vec3A::ZERO,
 | |
|     };
 | |
| 
 | |
|     /// Create a three-dimensional isometry from a rotation and a translation.
 | |
|     #[inline]
 | |
|     pub fn new(translation: impl Into<Vec3A>, rotation: Quat) -> Self {
 | |
|         Isometry3d {
 | |
|             rotation,
 | |
|             translation: translation.into(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a three-dimensional isometry from a rotation.
 | |
|     #[inline]
 | |
|     pub fn from_rotation(rotation: Quat) -> Self {
 | |
|         Isometry3d {
 | |
|             rotation,
 | |
|             translation: Vec3A::ZERO,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a three-dimensional isometry from a translation.
 | |
|     #[inline]
 | |
|     pub fn from_translation(translation: impl Into<Vec3A>) -> Self {
 | |
|         Isometry3d {
 | |
|             rotation: Quat::IDENTITY,
 | |
|             translation: translation.into(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Create a three-dimensional isometry from a translation with the given `x`, `y`, and `z` components.
 | |
|     #[inline]
 | |
|     pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
 | |
|         Isometry3d {
 | |
|             rotation: Quat::IDENTITY,
 | |
|             translation: Vec3A::new(x, y, z),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// The inverse isometry that undoes this one.
 | |
|     #[inline]
 | |
|     pub fn inverse(&self) -> Self {
 | |
|         let inv_rot = self.rotation.inverse();
 | |
|         Isometry3d {
 | |
|             rotation: inv_rot,
 | |
|             translation: inv_rot * -self.translation,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Compute `iso1.inverse() * iso2` in a more efficient way for one-shot cases.
 | |
|     ///
 | |
|     /// If the same isometry is used multiple times, it is more efficient to instead compute
 | |
|     /// the inverse once and use that for each transformation.
 | |
|     #[inline]
 | |
|     pub fn inverse_mul(&self, rhs: Self) -> Self {
 | |
|         let inv_rot = self.rotation.inverse();
 | |
|         let delta_translation = rhs.translation - self.translation;
 | |
|         Self::new(inv_rot * delta_translation, inv_rot * rhs.rotation)
 | |
|     }
 | |
| 
 | |
|     /// Transform a point by rotating and translating it using this isometry.
 | |
|     #[inline]
 | |
|     pub fn transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
 | |
|         self.rotation * point.into() + self.translation
 | |
|     }
 | |
| 
 | |
|     /// Transform a point by rotating and translating it using the inverse of this isometry.
 | |
|     ///
 | |
|     /// This is more efficient than `iso.inverse().transform_point(point)` for one-shot cases.
 | |
|     /// If the same isometry is used multiple times, it is more efficient to instead compute
 | |
|     /// the inverse once and use that for each transformation.
 | |
|     #[inline]
 | |
|     pub fn inverse_transform_point(&self, point: impl Into<Vec3A>) -> Vec3A {
 | |
|         self.rotation.inverse() * (point.into() - self.translation)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl From<Isometry3d> for Affine3 {
 | |
|     #[inline]
 | |
|     fn from(iso: Isometry3d) -> Self {
 | |
|         Affine3 {
 | |
|             matrix3: Mat3::from_quat(iso.rotation),
 | |
|             translation: iso.translation.into(),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl From<Isometry3d> for Affine3A {
 | |
|     #[inline]
 | |
|     fn from(iso: Isometry3d) -> Self {
 | |
|         Affine3A {
 | |
|             matrix3: Mat3A::from_quat(iso.rotation),
 | |
|             translation: iso.translation,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul for Isometry3d {
 | |
|     type Output = Self;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Self) -> Self::Output {
 | |
|         Isometry3d {
 | |
|             rotation: self.rotation * rhs.rotation,
 | |
|             translation: self.rotation * rhs.translation + self.translation,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul<Vec3A> for Isometry3d {
 | |
|     type Output = Vec3A;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Vec3A) -> Self::Output {
 | |
|         self.transform_point(rhs)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul<Vec3> for Isometry3d {
 | |
|     type Output = Vec3;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Vec3) -> Self::Output {
 | |
|         self.transform_point(rhs).into()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Mul<Dir3> for Isometry3d {
 | |
|     type Output = Dir3;
 | |
| 
 | |
|     #[inline]
 | |
|     fn mul(self, rhs: Dir3) -> Self::Output {
 | |
|         self.rotation * rhs
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl AbsDiffEq for Isometry3d {
 | |
|     type Epsilon = <f32 as AbsDiffEq>::Epsilon;
 | |
| 
 | |
|     fn default_epsilon() -> Self::Epsilon {
 | |
|         f32::default_epsilon()
 | |
|     }
 | |
| 
 | |
|     fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
 | |
|         self.rotation.abs_diff_eq(other.rotation, epsilon)
 | |
|             && self.translation.abs_diff_eq(other.translation, epsilon)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl RelativeEq for Isometry3d {
 | |
|     fn default_max_relative() -> Self::Epsilon {
 | |
|         Self::default_epsilon()
 | |
|     }
 | |
| 
 | |
|     fn relative_eq(
 | |
|         &self,
 | |
|         other: &Self,
 | |
|         epsilon: Self::Epsilon,
 | |
|         max_relative: Self::Epsilon,
 | |
|     ) -> bool {
 | |
|         self.rotation
 | |
|             .relative_eq(&other.rotation, epsilon, max_relative)
 | |
|             && self
 | |
|                 .translation
 | |
|                 .relative_eq(&other.translation, epsilon, max_relative)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(feature = "approx")]
 | |
| impl UlpsEq for Isometry3d {
 | |
|     fn default_max_ulps() -> u32 {
 | |
|         4
 | |
|     }
 | |
| 
 | |
|     fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
 | |
|         self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
 | |
|             && self
 | |
|                 .translation
 | |
|                 .ulps_eq(&other.translation, epsilon, max_ulps)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(test)]
 | |
| mod tests {
 | |
|     use super::*;
 | |
|     use crate::{vec2, vec3, vec3a};
 | |
|     use approx::assert_abs_diff_eq;
 | |
|     use core::f32::consts::{FRAC_PI_2, FRAC_PI_3};
 | |
| 
 | |
|     #[test]
 | |
|     fn mul_2d() {
 | |
|         let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
 | |
|         let iso2 = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
 | |
|         let expected = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
 | |
|         assert_abs_diff_eq!(iso1 * iso2, expected);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_mul_2d() {
 | |
|         let iso1 = Isometry2d::new(vec2(1.0, 0.0), Rot2::FRAC_PI_2);
 | |
|         let iso2 = Isometry2d::new(vec2(0.0, 0.0), Rot2::PI);
 | |
|         let expected = Isometry2d::new(vec2(0.0, 1.0), Rot2::FRAC_PI_2);
 | |
|         assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn mul_3d() {
 | |
|         let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
 | |
|         let iso2 = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
 | |
|         let expected = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
 | |
|         assert_abs_diff_eq!(iso1 * iso2, expected);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_mul_3d() {
 | |
|         let iso1 = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_x(FRAC_PI_2));
 | |
|         let iso2 = Isometry3d::new(vec3(1.0, 0.0, 1.0), Quat::from_rotation_x(FRAC_PI_2));
 | |
|         let expected = Isometry3d::new(vec3(0.0, 1.0, 0.0), Quat::IDENTITY);
 | |
|         assert_abs_diff_eq!(iso1.inverse_mul(iso2), expected);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn identity_2d() {
 | |
|         let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
 | |
|         assert_abs_diff_eq!(Isometry2d::IDENTITY * iso, iso);
 | |
|         assert_abs_diff_eq!(iso * Isometry2d::IDENTITY, iso);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn identity_3d() {
 | |
|         let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
 | |
|         assert_abs_diff_eq!(Isometry3d::IDENTITY * iso, iso);
 | |
|         assert_abs_diff_eq!(iso * Isometry3d::IDENTITY, iso);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_2d() {
 | |
|         let iso = Isometry2d::new(vec2(-1.0, -0.5), Rot2::degrees(75.0));
 | |
|         let inv = iso.inverse();
 | |
|         assert_abs_diff_eq!(iso * inv, Isometry2d::IDENTITY);
 | |
|         assert_abs_diff_eq!(inv * iso, Isometry2d::IDENTITY);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_3d() {
 | |
|         let iso = Isometry3d::new(vec3(-1.0, 2.5, 3.3), Quat::from_rotation_z(FRAC_PI_3));
 | |
|         let inv = iso.inverse();
 | |
|         assert_abs_diff_eq!(iso * inv, Isometry3d::IDENTITY);
 | |
|         assert_abs_diff_eq!(inv * iso, Isometry3d::IDENTITY);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn transform_2d() {
 | |
|         let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
 | |
|         let point = vec2(1.0, 1.0);
 | |
|         assert_abs_diff_eq!(vec2(-0.5, 0.5), iso * point);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_transform_2d() {
 | |
|         let iso = Isometry2d::new(vec2(0.5, -0.5), Rot2::FRAC_PI_2);
 | |
|         let point = vec2(-0.5, 0.5);
 | |
|         assert_abs_diff_eq!(vec2(1.0, 1.0), iso.inverse_transform_point(point));
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn transform_3d() {
 | |
|         let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
 | |
|         let point = vec3(1.0, 1.0, 1.0);
 | |
|         assert_abs_diff_eq!(vec3(2.0, 1.0, -1.0), iso * point);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn inverse_transform_3d() {
 | |
|         let iso = Isometry3d::new(vec3(1.0, 0.0, 0.0), Quat::from_rotation_y(FRAC_PI_2));
 | |
|         let point = vec3(2.0, 1.0, -1.0);
 | |
|         assert_abs_diff_eq!(vec3a(1.0, 1.0, 1.0), iso.inverse_transform_point(point));
 | |
|     }
 | |
| }
 |