
# Objective Using `Reflect::clone_value` can be somewhat confusing to those unfamiliar with how Bevy's reflection crate works. For example take the following code: ```rust let value: usize = 123; let clone: Box<dyn Reflect> = value.clone_value(); ``` What can we expect to be the underlying type of `clone`? If you guessed `usize`, then you're correct! Let's try another: ```rust #[derive(Reflect, Clone)] struct Foo(usize); let value: Foo = Foo(123); let clone: Box<dyn Reflect> = value.clone_value(); ``` What about this code? What is the underlying type of `clone`? If you guessed `Foo`, unfortunately you'd be wrong. It's actually `DynamicStruct`. It's not obvious that the generated `Reflect` impl actually calls `Struct::clone_dynamic` under the hood, which always returns `DynamicStruct`. There are already some efforts to make this a bit more apparent to the end-user: #7207 changes the signature of `Reflect::clone_value` to instead return `Box<dyn PartialReflect>`, signaling that we're potentially returning a dynamic type. But why _can't_ we return `Foo`? `Foo` can obviously be cloned— in fact, we already derived `Clone` on it. But even without the derive, this seems like something `Reflect` should be able to handle. Almost all types that implement `Reflect` either contain no data (trivially clonable), they contain a `#[reflect_value]` type (which, by definition, must implement `Clone`), or they contain another `Reflect` type (which recursively fall into one of these three categories). This PR aims to enable true reflection-based cloning where you get back exactly the type that you think you do. ## Solution Add a `Reflect::reflect_clone` method which returns `Result<Box<dyn Reflect>, ReflectCloneError>`, where the `Box<dyn Reflect>` is guaranteed to be the same type as `Self`. ```rust #[derive(Reflect)] struct Foo(usize); let value: Foo = Foo(123); let clone: Box<dyn Reflect> = value.reflect_clone().unwrap(); assert!(clone.is::<Foo>()); ``` Notice that we didn't even need to derive `Clone` for this to work: it's entirely powered via reflection! Under the hood, the macro generates something like this: ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Self { // The `reflect_clone` impl for `usize` just makes use of its `Clone` impl 0: Reflect::reflect_clone(&self.0)?.take().map_err(/* ... */)?, })) } ``` If we did derive `Clone`, we can tell `Reflect` to rely on that instead: ```rust #[derive(Reflect, Clone)] #[reflect(Clone)] struct Foo(usize); ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Clone::clone(self))) } ``` </details> Or, we can specify our own cloning function: ```rust #[derive(Reflect)] #[reflect(Clone(incremental_clone))] struct Foo(usize); fn incremental_clone(value: &usize) -> usize { *value + 1 } ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(incremental_clone(self))) } ``` </details> Similarly, we can specify how fields should be cloned. This is important for fields that are `#[reflect(ignore)]`'d as we otherwise have no way to know how they should be cloned. ```rust #[derive(Reflect)] struct Foo { #[reflect(ignore, clone)] bar: usize, #[reflect(ignore, clone = "incremental_clone")] baz: usize, } fn incremental_clone(value: &usize) -> usize { *value + 1 } ``` <details> <summary>Generated Code</summary> ```rust fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError> { Ok(Box::new(Self { bar: Clone::clone(&self.bar), baz: incremental_clone(&self.baz), })) } ``` </details> If we don't supply a `clone` attribute for an ignored field, then the method will automatically return `Err(ReflectCloneError::FieldNotClonable {/* ... */})`. `Err` values "bubble up" to the caller. So if `Foo` contains `Bar` and the `reflect_clone` method for `Bar` returns `Err`, then the `reflect_clone` method for `Foo` also returns `Err`. ### Attribute Syntax You might have noticed the differing syntax between the container attribute and the field attribute. This was purely done for consistency with the current attributes. There are PRs aimed at improving this. #7317 aims at making the "special-cased" attributes more in line with the field attributes syntactically. And #9323 aims at moving away from the stringified paths in favor of just raw function paths. ### Compatibility with Unique Reflect This PR was designed with Unique Reflect (#7207) in mind. This method actually wouldn't change that much (if at all) under Unique Reflect. It would still exist on `Reflect` and it would still `Option<Box<dyn Reflect>>`. In fact, Unique Reflect would only _improve_ the user's understanding of what this method returns. We may consider moving what's currently `Reflect::clone_value` to `PartialReflect` and possibly renaming it to `partial_reflect_clone` or `clone_dynamic` to better indicate how it differs from `reflect_clone`. ## Testing You can test locally by running the following command: ``` cargo test --package bevy_reflect ``` --- ## Changelog - Added `Reflect::reflect_clone` method - Added `ReflectCloneError` error enum - Added `#[reflect(Clone)]` container attribute - Added `#[reflect(clone)]` field attribute
846 lines
31 KiB
Rust
846 lines
31 KiB
Rust
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
|
|
|
//! This crate contains macros used by Bevy's `Reflect` API.
|
|
//!
|
|
//! The main export of this crate is the derive macro for [`Reflect`]. This allows
|
|
//! types to easily implement `Reflect` along with other `bevy_reflect` traits,
|
|
//! such as `Struct`, `GetTypeRegistration`, and more— all with a single derive!
|
|
//!
|
|
//! Some other noteworthy exports include the derive macros for [`FromReflect`] and
|
|
//! [`TypePath`], as well as the [`reflect_trait`] attribute macro.
|
|
//!
|
|
//! [`Reflect`]: crate::derive_reflect
|
|
//! [`FromReflect`]: crate::derive_from_reflect
|
|
//! [`TypePath`]: crate::derive_type_path
|
|
//! [`reflect_trait`]: macro@reflect_trait
|
|
|
|
extern crate proc_macro;
|
|
|
|
mod attribute_parser;
|
|
mod container_attributes;
|
|
mod custom_attributes;
|
|
mod derive_data;
|
|
#[cfg(feature = "documentation")]
|
|
mod documentation;
|
|
mod enum_utility;
|
|
mod field_attributes;
|
|
mod from_reflect;
|
|
mod generics;
|
|
mod ident;
|
|
mod impls;
|
|
mod meta;
|
|
mod reflect_opaque;
|
|
mod registration;
|
|
mod remote;
|
|
mod result_sifter;
|
|
mod serialization;
|
|
mod string_expr;
|
|
mod struct_utility;
|
|
mod trait_reflection;
|
|
mod type_path;
|
|
mod where_clause_options;
|
|
|
|
use crate::derive_data::{ReflectDerive, ReflectMeta, ReflectStruct};
|
|
use container_attributes::ContainerAttributes;
|
|
use derive_data::{ReflectImplSource, ReflectProvenance, ReflectTraitToImpl, ReflectTypePath};
|
|
use proc_macro::TokenStream;
|
|
use quote::quote;
|
|
use reflect_opaque::ReflectOpaqueDef;
|
|
use syn::{parse_macro_input, DeriveInput};
|
|
use type_path::NamedTypePathDef;
|
|
|
|
pub(crate) static REFLECT_ATTRIBUTE_NAME: &str = "reflect";
|
|
pub(crate) static TYPE_PATH_ATTRIBUTE_NAME: &str = "type_path";
|
|
pub(crate) static TYPE_NAME_ATTRIBUTE_NAME: &str = "type_name";
|
|
|
|
/// Used both for [`impl_reflect`] and [`derive_reflect`].
|
|
///
|
|
/// [`impl_reflect`]: macro@impl_reflect
|
|
/// [`derive_reflect`]: derive_reflect()
|
|
fn match_reflect_impls(ast: DeriveInput, source: ReflectImplSource) -> TokenStream {
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source,
|
|
trait_: ReflectTraitToImpl::Reflect,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let assertions = impls::impl_assertions(&derive_data);
|
|
|
|
let (reflect_impls, from_reflect_impl) = match derive_data {
|
|
ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => (
|
|
impls::impl_struct(&struct_data),
|
|
if struct_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_struct(&struct_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::TupleStruct(struct_data) => (
|
|
impls::impl_tuple_struct(&struct_data),
|
|
if struct_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_tuple_struct(&struct_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::Enum(enum_data) => (
|
|
impls::impl_enum(&enum_data),
|
|
if enum_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_enum(&enum_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::Opaque(meta) => (
|
|
impls::impl_opaque(&meta),
|
|
if meta.from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_opaque(&meta))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
};
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#reflect_impls
|
|
|
|
#from_reflect_impl
|
|
|
|
#assertions
|
|
};
|
|
})
|
|
}
|
|
|
|
/// The main derive macro used by `bevy_reflect` for deriving its `Reflect` trait.
|
|
///
|
|
/// This macro can be used on all structs and enums (unions are not supported).
|
|
/// It will automatically generate implementations for `Reflect`, `Typed`, `GetTypeRegistration`, and `FromReflect`.
|
|
/// And, depending on the item's structure, will either implement `Struct`, `TupleStruct`, or `Enum`.
|
|
///
|
|
/// See the [`FromReflect`] derive macro for more information on how to customize the `FromReflect` implementation.
|
|
///
|
|
/// # Container Attributes
|
|
///
|
|
/// This macro comes with some helper attributes that can be added to the container item
|
|
/// in order to provide additional functionality or alter the generated implementations.
|
|
///
|
|
/// In addition to those listed, this macro can also use the attributes for [`TypePath`] derives.
|
|
///
|
|
/// ## `#[reflect(Ident)]`
|
|
///
|
|
/// The `#[reflect(Ident)]` attribute is used to add type data registrations to the `GetTypeRegistration`
|
|
/// implementation corresponding to the given identifier, prepended by `Reflect`.
|
|
///
|
|
/// For example, `#[reflect(Foo, Bar)]` would add two registrations:
|
|
/// one for `ReflectFoo` and another for `ReflectBar`.
|
|
/// This assumes these types are indeed in-scope wherever this macro is called.
|
|
///
|
|
/// This is often used with traits that have been marked by the [`#[reflect_trait]`](macro@reflect_trait)
|
|
/// macro in order to register the type's implementation of that trait.
|
|
///
|
|
/// ### Default Registrations
|
|
///
|
|
/// The following types are automatically registered when deriving `Reflect`:
|
|
///
|
|
/// * `ReflectFromReflect` (unless opting out of `FromReflect`)
|
|
/// * `SerializationData`
|
|
/// * `ReflectFromPtr`
|
|
///
|
|
/// ### Special Identifiers
|
|
///
|
|
/// There are a few "special" identifiers that work a bit differently:
|
|
///
|
|
/// * `#[reflect(Clone)]` will force the implementation of `Reflect::reflect_clone` to rely on
|
|
/// the type's [`Clone`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Clone(my_clone_func))]` where
|
|
/// `my_clone_func` is the path to a function matching the signature:
|
|
/// `(&Self) -> Self`.
|
|
/// * `#[reflect(Debug)]` will force the implementation of `Reflect::reflect_debug` to rely on
|
|
/// the type's [`Debug`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Debug(my_debug_func))]` where
|
|
/// `my_debug_func` is the path to a function matching the signature:
|
|
/// `(&Self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result`.
|
|
/// * `#[reflect(PartialEq)]` will force the implementation of `Reflect::reflect_partial_eq` to rely on
|
|
/// the type's [`PartialEq`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(PartialEq(my_partial_eq_func))]` where
|
|
/// `my_partial_eq_func` is the path to a function matching the signature:
|
|
/// `(&Self, value: &dyn #bevy_reflect_path::Reflect) -> bool`.
|
|
/// * `#[reflect(Hash)]` will force the implementation of `Reflect::reflect_hash` to rely on
|
|
/// the type's [`Hash`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Hash(my_hash_func))]` where
|
|
/// `my_hash_func` is the path to a function matching the signature: `(&Self) -> u64`.
|
|
/// * `#[reflect(Default)]` will register the `ReflectDefault` type data as normal.
|
|
/// However, it will also affect how certain other operations are performed in order
|
|
/// to improve performance and/or robustness.
|
|
/// An example of where this is used is in the [`FromReflect`] derive macro,
|
|
/// where adding this attribute will cause the `FromReflect` implementation to create
|
|
/// a base value using its [`Default`] implementation avoiding issues with ignored fields
|
|
/// (for structs and tuple structs only).
|
|
///
|
|
/// ## `#[reflect(opaque)]`
|
|
///
|
|
/// The `#[reflect(opaque)]` attribute denotes that the item should implement `Reflect` as an opaque type,
|
|
/// hiding its structure and fields from the reflection API.
|
|
/// This means that it will forgo implementing `Struct`, `TupleStruct`, or `Enum`.
|
|
///
|
|
/// Furthermore, it requires that the type implements [`Clone`].
|
|
/// If planning to serialize this type using the reflection serializers,
|
|
/// then the `Serialize` and `Deserialize` traits will need to be implemented and registered as well.
|
|
///
|
|
/// ## `#[reflect(from_reflect = false)]`
|
|
///
|
|
/// This attribute will opt-out of the default `FromReflect` implementation.
|
|
///
|
|
/// This is useful for when a type can't or shouldn't implement `FromReflect`,
|
|
/// or if a manual implementation is desired.
|
|
///
|
|
/// Note that in the latter case, `ReflectFromReflect` will no longer be automatically registered.
|
|
///
|
|
/// ## `#[reflect(type_path = false)]`
|
|
///
|
|
/// This attribute will opt-out of the default `TypePath` implementation.
|
|
///
|
|
/// This is useful for when a type can't or shouldn't implement `TypePath`,
|
|
/// or if a manual implementation is desired.
|
|
///
|
|
/// ## `#[reflect(no_field_bounds)]`
|
|
///
|
|
/// This attribute will opt-out of the default trait bounds added to all field types
|
|
/// for the generated reflection trait impls.
|
|
///
|
|
/// Normally, all fields will have the bounds `TypePath`, and either `FromReflect` or `Reflect`
|
|
/// depending on if `#[reflect(from_reflect = false)]` is used.
|
|
/// However, this might not always be desirable, and so this attribute may be used to remove those bounds.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// If a type is recursive the default bounds will cause an overflow error when building:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// #[derive(Reflect)] // ERROR: overflow evaluating the requirement `Foo: FromReflect`
|
|
/// struct Foo {
|
|
/// foo: Vec<Foo>,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// // impl bevy_reflect::Reflect for Foo
|
|
/// // where
|
|
/// // Self: Any + Send + Sync,
|
|
/// // Vec<Foo>: FromReflect + TypePath,
|
|
/// ```
|
|
///
|
|
/// In this case, `Foo` is given the bounds `Vec<Foo>: FromReflect + TypePath`,
|
|
/// which requires that `Foo` implements `FromReflect`,
|
|
/// which requires that `Vec<Foo>` implements `FromReflect`,
|
|
/// and so on, resulting in the error.
|
|
///
|
|
/// To fix this, we can add `#[reflect(no_field_bounds)]` to `Foo` to remove the bounds on `Vec<Foo>`:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(no_field_bounds)]
|
|
/// struct Foo {
|
|
/// foo: Vec<Foo>,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// // impl bevy_reflect::Reflect for Foo
|
|
/// // where
|
|
/// // Self: Any + Send + Sync,
|
|
/// ```
|
|
///
|
|
/// ## `#[reflect(where T: Trait, U::Assoc: Trait, ...)]`
|
|
///
|
|
/// This attribute can be used to add additional bounds to the generated reflection trait impls.
|
|
///
|
|
/// This is useful for when a type needs certain bounds only applied to the reflection impls
|
|
/// that are not otherwise automatically added by the derive macro.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// In the example below, we want to enforce that `T::Assoc: List` is required in order for
|
|
/// `Foo<T>` to be reflectable, but we don't want it to prevent `Foo<T>` from being used
|
|
/// in places where `T::Assoc: List` is not required.
|
|
///
|
|
/// ```ignore
|
|
/// trait Trait {
|
|
/// type Assoc;
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(where T::Assoc: List)]
|
|
/// struct Foo<T: Trait> where T::Assoc: Default {
|
|
/// value: T::Assoc,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// //
|
|
/// // impl<T: Trait> bevy_reflect::Reflect for Foo<T>
|
|
/// // where
|
|
/// // Self: Any + Send + Sync,
|
|
/// // T::Assoc: Default,
|
|
/// // T: TypePath,
|
|
/// // T::Assoc: FromReflect + TypePath,
|
|
/// // T::Assoc: List,
|
|
/// // {/* ... */}
|
|
/// ```
|
|
///
|
|
/// ## `#[reflect(@...)]`
|
|
///
|
|
/// This attribute can be used to register custom attributes to the type's `TypeInfo`.
|
|
///
|
|
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
|
|
///
|
|
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
|
|
/// If two attributes of the same type are registered, the last one will overwrite the first.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct Required;
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct EditorTooltip(String);
|
|
///
|
|
/// impl EditorTooltip {
|
|
/// fn new(text: &str) -> Self {
|
|
/// Self(text.to_string())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// // Specify a "required" status and tooltip:
|
|
/// #[reflect(@Required, @EditorTooltip::new("An ID is required!"))]
|
|
/// struct Id(u8);
|
|
/// ```
|
|
///
|
|
/// # Field Attributes
|
|
///
|
|
/// Along with the container attributes, this macro comes with some attributes that may be applied
|
|
/// to the contained fields themselves.
|
|
///
|
|
/// ## `#[reflect(ignore)]`
|
|
///
|
|
/// This attribute simply marks a field to be ignored by the reflection API.
|
|
///
|
|
/// This allows fields to completely opt-out of reflection,
|
|
/// which may be useful for maintaining invariants, keeping certain data private,
|
|
/// or allowing the use of types that do not implement `Reflect` within the container.
|
|
///
|
|
/// ## `#[reflect(skip_serializing)]`
|
|
///
|
|
/// This works similar to `#[reflect(ignore)]`, but rather than opting out of _all_ of reflection,
|
|
/// it simply opts the field out of both serialization and deserialization.
|
|
/// This can be useful when a field should be accessible via reflection, but may not make
|
|
/// sense in a serialized form, such as computed data.
|
|
///
|
|
/// What this does is register the `SerializationData` type within the `GetTypeRegistration` implementation,
|
|
/// which will be used by the reflection serializers to determine whether or not the field is serializable.
|
|
///
|
|
/// ## `#[reflect(clone)]`
|
|
///
|
|
/// This attribute affects the `Reflect::reflect_clone` implementation.
|
|
///
|
|
/// Without this attribute, the implementation will rely on the field's own `Reflect::reflect_clone` implementation.
|
|
/// When this attribute is present, the implementation will instead use the field's `Clone` implementation directly.
|
|
///
|
|
/// The attribute may also take the path to a custom function like `#[reflect(clone = "path::to::my_clone_func")]`,
|
|
/// where `my_clone_func` matches the signature `(&Self) -> Self`.
|
|
///
|
|
/// This attribute does nothing if the containing struct/enum has the `#[reflect(Clone)]` attribute.
|
|
///
|
|
/// ## `#[reflect(@...)]`
|
|
///
|
|
/// This attribute can be used to register custom attributes to the field's `TypeInfo`.
|
|
///
|
|
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
|
|
///
|
|
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
|
|
/// If two attributes of the same type are registered, the last one will overwrite the first.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct EditorTooltip(String);
|
|
///
|
|
/// impl EditorTooltip {
|
|
/// fn new(text: &str) -> Self {
|
|
/// Self(text.to_string())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct Slider {
|
|
/// // Specify a custom range and tooltip:
|
|
/// #[reflect(@0.0..=1.0, @EditorTooltip::new("Must be between 0 and 1"))]
|
|
/// value: f32,
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// [`reflect_trait`]: macro@reflect_trait
|
|
#[proc_macro_derive(Reflect, attributes(reflect, type_path, type_name))]
|
|
pub fn derive_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
match_reflect_impls(ast, ReflectImplSource::DeriveLocalType)
|
|
}
|
|
|
|
/// Derives the `FromReflect` trait.
|
|
///
|
|
/// # Field Attributes
|
|
///
|
|
/// ## `#[reflect(ignore)]`
|
|
///
|
|
/// The `#[reflect(ignore)]` attribute is shared with the [`#[derive(Reflect)]`](Reflect) macro and has much of the same
|
|
/// functionality in that it denotes that a field will be ignored by the reflection API.
|
|
///
|
|
/// The only major difference is that using it with this derive requires that the field implements [`Default`].
|
|
/// Without this requirement, there would be no way for `FromReflect` to automatically construct missing fields
|
|
/// that have been ignored.
|
|
///
|
|
/// ## `#[reflect(default)]`
|
|
///
|
|
/// If a field cannot be read, this attribute specifies a default value to be used in its place.
|
|
///
|
|
/// By default, this attribute denotes that the field's type implements [`Default`].
|
|
/// However, it can also take in a path string to a user-defined function that will return the default value.
|
|
/// This takes the form: `#[reflect(default = "path::to::my_function")]` where `my_function` is a parameterless
|
|
/// function that must return some default value for the type.
|
|
///
|
|
/// Specifying a custom default can be used to give different fields their own specialized defaults,
|
|
/// or to remove the `Default` requirement on fields marked with `#[reflect(ignore)]`.
|
|
/// Additionally, either form of this attribute can be used to fill in fields that are simply missing,
|
|
/// such as when converting a partially-constructed dynamic type to a concrete one.
|
|
#[proc_macro_derive(FromReflect, attributes(reflect))]
|
|
pub fn derive_from_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source: ReflectImplSource::DeriveLocalType,
|
|
trait_: ReflectTraitToImpl::FromReflect,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let from_reflect_impl = match derive_data {
|
|
ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => {
|
|
from_reflect::impl_struct(&struct_data)
|
|
}
|
|
ReflectDerive::TupleStruct(struct_data) => from_reflect::impl_tuple_struct(&struct_data),
|
|
ReflectDerive::Enum(meta) => from_reflect::impl_enum(&meta),
|
|
ReflectDerive::Opaque(meta) => from_reflect::impl_opaque(&meta),
|
|
};
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// Derives the `TypePath` trait, providing a stable alternative to [`std::any::type_name`].
|
|
///
|
|
/// # Container Attributes
|
|
///
|
|
/// ## `#[type_path = "my_crate::foo"]`
|
|
///
|
|
/// Optionally specifies a custom module path to use instead of [`module_path`].
|
|
///
|
|
/// This path does not include the final identifier.
|
|
///
|
|
/// ## `#[type_name = "RenamedType"]`
|
|
///
|
|
/// Optionally specifies a new terminating identifier for `TypePath`.
|
|
///
|
|
/// To use this attribute, `#[type_path = "..."]` must also be specified.
|
|
#[proc_macro_derive(TypePath, attributes(type_path, type_name))]
|
|
pub fn derive_type_path(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source: ReflectImplSource::DeriveLocalType,
|
|
trait_: ReflectTraitToImpl::TypePath,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let type_path_impl = impls::impl_type_path(derive_data.meta());
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#type_path_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A macro that automatically generates type data for traits, which their implementors can then register.
|
|
///
|
|
/// The output of this macro is a struct that takes reflected instances of the implementor's type
|
|
/// and returns the value as a trait object.
|
|
/// Because of this, **it can only be used on [object-safe] traits.**
|
|
///
|
|
/// For a trait named `MyTrait`, this will generate the struct `ReflectMyTrait`.
|
|
/// The generated struct can be created using `FromType` with any type that implements the trait.
|
|
/// The creation and registration of this generated struct as type data can be automatically handled
|
|
/// by [`#[derive(Reflect)]`](Reflect).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// # use std::any::TypeId;
|
|
/// # use bevy_reflect_derive::{Reflect, reflect_trait};
|
|
/// #[reflect_trait] // Generates `ReflectMyTrait`
|
|
/// trait MyTrait {
|
|
/// fn print(&self) -> &str;
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(MyTrait)] // Automatically registers `ReflectMyTrait`
|
|
/// struct SomeStruct;
|
|
///
|
|
/// impl MyTrait for SomeStruct {
|
|
/// fn print(&self) -> &str {
|
|
/// "Hello, World!"
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // We can create the type data manually if we wanted:
|
|
/// let my_trait: ReflectMyTrait = FromType::<SomeStruct>::from_type();
|
|
///
|
|
/// // Or we can simply get it from the registry:
|
|
/// let mut registry = TypeRegistry::default();
|
|
/// registry.register::<SomeStruct>();
|
|
/// let my_trait = registry
|
|
/// .get_type_data::<ReflectMyTrait>(TypeId::of::<SomeStruct>())
|
|
/// .unwrap();
|
|
///
|
|
/// // Then use it on reflected data
|
|
/// let reflected: Box<dyn Reflect> = Box::new(SomeStruct);
|
|
/// let reflected_my_trait: &dyn MyTrait = my_trait.get(&*reflected).unwrap();
|
|
/// assert_eq!("Hello, World!", reflected_my_trait.print());
|
|
/// ```
|
|
///
|
|
/// [object-safe]: https://doc.rust-lang.org/reference/items/traits.html#object-safety
|
|
#[proc_macro_attribute]
|
|
pub fn reflect_trait(args: TokenStream, input: TokenStream) -> TokenStream {
|
|
trait_reflection::reflect_trait(&args, input)
|
|
}
|
|
|
|
/// Generates a wrapper type that can be used to "derive `Reflect`" for remote types.
|
|
///
|
|
/// This works by wrapping the remote type in a generated wrapper that has the `#[repr(transparent)]` attribute.
|
|
/// This allows the two types to be safely [transmuted] back-and-forth.
|
|
///
|
|
/// # Defining the Wrapper
|
|
///
|
|
/// Before defining the wrapper type, please note that it is _required_ that all fields of the remote type are public.
|
|
/// The generated code will, at times, need to access or mutate them,
|
|
/// and we do not currently have a way to assign getters/setters to each field
|
|
/// (but this may change in the future).
|
|
///
|
|
/// The wrapper definition should match the remote type 1-to-1.
|
|
/// This includes the naming and ordering of the fields and variants.
|
|
///
|
|
/// Generics and lifetimes do _not_ need to have the same names, however, they _do_ need to follow the same order.
|
|
/// Additionally, whether generics are inlined or placed in a where clause should not matter.
|
|
///
|
|
/// Lastly, all macros and doc-comments should be placed __below__ this attribute.
|
|
/// If they are placed above, they will not be properly passed to the generated wrapper type.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Given a remote type, `RemoteType`:
|
|
///
|
|
/// ```
|
|
/// #[derive(Default)]
|
|
/// struct RemoteType<T>
|
|
/// where
|
|
/// T: Default + Clone,
|
|
/// {
|
|
/// pub foo: T,
|
|
/// pub bar: usize
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// We would define our wrapper type as such:
|
|
///
|
|
/// ```ignore
|
|
/// use external_crate::RemoteType;
|
|
///
|
|
/// #[reflect_remote(RemoteType<T>)]
|
|
/// #[derive(Default)]
|
|
/// pub struct WrapperType<T: Default + Clone> {
|
|
/// pub foo: T,
|
|
/// pub bar: usize
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Apart from all the reflection trait implementations, this generates something like the following:
|
|
///
|
|
/// ```ignore
|
|
/// use external_crate::RemoteType;
|
|
///
|
|
/// #[derive(Default)]
|
|
/// #[repr(transparent)]
|
|
/// pub struct Wrapper<T: Default + Clone>(RemoteType<T>);
|
|
/// ```
|
|
///
|
|
/// # Usage as a Field
|
|
///
|
|
/// You can tell `Reflect` to use a remote type's wrapper internally on fields of a struct or enum.
|
|
/// This allows the real type to be used as usual while `Reflect` handles everything internally.
|
|
/// To do this, add the `#[reflect(remote = path::to::MyType)]` attribute to your field:
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct SomeStruct {
|
|
/// #[reflect(remote = RemoteTypeWrapper)]
|
|
/// data: RemoteType
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// ## Safety
|
|
///
|
|
/// When using the `#[reflect(remote = path::to::MyType)]` field attribute, be sure you are defining the correct wrapper type.
|
|
/// Internally, this field will be unsafely [transmuted], and is only sound if using a wrapper generated for the remote type.
|
|
/// This also means keeping your wrapper definitions up-to-date with the remote types.
|
|
///
|
|
/// [transmuted]: std::mem::transmute
|
|
#[proc_macro_attribute]
|
|
pub fn reflect_remote(args: TokenStream, input: TokenStream) -> TokenStream {
|
|
remote::reflect_remote(args, input)
|
|
}
|
|
|
|
/// A macro used to generate reflection trait implementations for the given type.
|
|
///
|
|
/// This is functionally the same as [deriving `Reflect`] using the `#[reflect(opaque)]` container attribute.
|
|
///
|
|
/// The only reason for this macro's existence is so that `bevy_reflect` can easily implement the reflection traits
|
|
/// on primitives and other opaque types internally.
|
|
///
|
|
/// Since this macro also implements `TypePath`, the type path must be explicit.
|
|
/// See [`impl_type_path!`] for the exact syntax.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Types can be passed with or without registering type data:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!(my_crate::Foo);
|
|
/// impl_reflect_opaque!(my_crate::Bar(Debug, Default, Serialize, Deserialize));
|
|
/// ```
|
|
///
|
|
/// Generic types can also specify their parameters and bounds:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!(my_crate::Foo<T1, T2: Baz> where T1: Bar (Default, Serialize, Deserialize));
|
|
/// ```
|
|
///
|
|
/// Custom type paths can be specified:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!((in not_my_crate as NotFoo) Foo(Debug, Default));
|
|
/// ```
|
|
///
|
|
/// [deriving `Reflect`]: Reflect
|
|
#[proc_macro]
|
|
pub fn impl_reflect_opaque(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input with ReflectOpaqueDef::parse_reflect);
|
|
|
|
let default_name = &def.type_path.segments.last().unwrap().ident;
|
|
let type_path = if def.type_path.leading_colon.is_none() && def.custom_path.is_none() {
|
|
ReflectTypePath::Primitive(default_name)
|
|
} else {
|
|
ReflectTypePath::External {
|
|
path: &def.type_path,
|
|
custom_path: def.custom_path.map(|path| path.into_path(default_name)),
|
|
generics: &def.generics,
|
|
}
|
|
};
|
|
|
|
let meta = ReflectMeta::new(type_path, def.traits.unwrap_or_default());
|
|
|
|
#[cfg(feature = "documentation")]
|
|
let meta = meta.with_docs(documentation::Documentation::from_attributes(&def.attrs));
|
|
|
|
let reflect_impls = impls::impl_opaque(&meta);
|
|
let from_reflect_impl = from_reflect::impl_opaque(&meta);
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#reflect_impls
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A replacement for `#[derive(Reflect)]` to be used with foreign types which
|
|
/// the definitions of cannot be altered.
|
|
///
|
|
/// This macro is an alternative to [`impl_reflect_opaque!`] and [`impl_from_reflect_opaque!`]
|
|
/// which implement foreign types as Opaque types. Note that there is no `impl_from_reflect`,
|
|
/// as this macro will do the job of both. This macro implements them using one of the reflect
|
|
/// variant traits (`bevy_reflect::{Struct, TupleStruct, Enum}`, etc.),
|
|
/// which have greater functionality. The type being reflected must be in scope, as you cannot
|
|
/// qualify it in the macro as e.g. `bevy::prelude::Vec3`.
|
|
///
|
|
/// It is necessary to add a `#[type_path = "my_crate::foo"]` attribute to all types.
|
|
///
|
|
/// It may be necessary to add `#[reflect(Default)]` for some types, specifically non-constructible
|
|
/// foreign types. Without `Default` reflected for such types, you will usually get an arcane
|
|
/// error message and fail to compile. If the type does not implement `Default`, it may not
|
|
/// be possible to reflect without extending the macro.
|
|
///
|
|
///
|
|
/// # Example
|
|
/// Implementing `Reflect` for `bevy::prelude::Vec3` as a struct type:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// use bevy::prelude::Vec3;
|
|
///
|
|
/// impl_reflect!(
|
|
/// #[reflect(PartialEq, Serialize, Deserialize, Default)]
|
|
/// #[type_path = "bevy::prelude"]
|
|
/// struct Vec3 {
|
|
/// x: f32,
|
|
/// y: f32,
|
|
/// z: f32
|
|
/// }
|
|
/// );
|
|
/// ```
|
|
#[proc_macro]
|
|
pub fn impl_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
match_reflect_impls(ast, ReflectImplSource::ImplRemoteType)
|
|
}
|
|
|
|
/// A macro used to generate a `FromReflect` trait implementation for the given type.
|
|
///
|
|
/// This is functionally the same as [deriving `FromReflect`] on a type that [derives `Reflect`] using
|
|
/// the `#[reflect(opaque)]` container attribute.
|
|
///
|
|
/// The only reason this macro exists is so that `bevy_reflect` can easily implement `FromReflect` on
|
|
/// primitives and other opaque types internally.
|
|
///
|
|
/// Please note that this macro will not work with any type that [derives `Reflect`] normally
|
|
/// or makes use of the [`impl_reflect_opaque!`] macro, as those macros also implement `FromReflect`
|
|
/// by default.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_from_reflect_opaque!(foo<T1, T2: Baz> where T1: Bar);
|
|
/// ```
|
|
///
|
|
/// [deriving `FromReflect`]: FromReflect
|
|
/// [derives `Reflect`]: Reflect
|
|
#[proc_macro]
|
|
pub fn impl_from_reflect_opaque(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input with ReflectOpaqueDef::parse_from_reflect);
|
|
|
|
let default_name = &def.type_path.segments.last().unwrap().ident;
|
|
let type_path = if def.type_path.leading_colon.is_none()
|
|
&& def.custom_path.is_none()
|
|
&& def.generics.params.is_empty()
|
|
{
|
|
ReflectTypePath::Primitive(default_name)
|
|
} else {
|
|
ReflectTypePath::External {
|
|
path: &def.type_path,
|
|
custom_path: def.custom_path.map(|alias| alias.into_path(default_name)),
|
|
generics: &def.generics,
|
|
}
|
|
};
|
|
|
|
let from_reflect_impl =
|
|
from_reflect::impl_opaque(&ReflectMeta::new(type_path, def.traits.unwrap_or_default()));
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A replacement for [deriving `TypePath`] for use on foreign types.
|
|
///
|
|
/// Since (unlike the derive) this macro may be invoked in a different module to where the type is defined,
|
|
/// it requires an 'absolute' path definition.
|
|
///
|
|
/// Specifically, a leading `::` denoting a global path must be specified
|
|
/// or a preceding `(in my_crate::foo)` to specify the custom path must be used.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Implementing `TypePath` on a foreign type:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(::foreign_crate::foo::bar::Baz);
|
|
/// ```
|
|
///
|
|
/// On a generic type (this can also accept trait bounds):
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(::foreign_crate::Foo<T>);
|
|
/// impl_type_path!(::foreign_crate::Goo<T: ?Sized>);
|
|
/// ```
|
|
///
|
|
/// On a primitive (note this will not compile for a non-primitive type):
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(bool);
|
|
/// ```
|
|
///
|
|
/// With a custom type path:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!((in other_crate::foo::bar) Baz);
|
|
/// ```
|
|
///
|
|
/// With a custom type path and a custom type name:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!((in other_crate::foo as Baz) Bar);
|
|
/// ```
|
|
///
|
|
/// [deriving `TypePath`]: TypePath
|
|
#[proc_macro]
|
|
pub fn impl_type_path(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input as NamedTypePathDef);
|
|
|
|
let type_path = match def {
|
|
NamedTypePathDef::External {
|
|
ref path,
|
|
custom_path,
|
|
ref generics,
|
|
} => {
|
|
let default_name = &path.segments.last().unwrap().ident;
|
|
|
|
ReflectTypePath::External {
|
|
path,
|
|
custom_path: custom_path.map(|path| path.into_path(default_name)),
|
|
generics,
|
|
}
|
|
}
|
|
NamedTypePathDef::Primitive(ref ident) => ReflectTypePath::Primitive(ident),
|
|
};
|
|
|
|
let meta = ReflectMeta::new(type_path, ContainerAttributes::default());
|
|
|
|
let type_path_impl = impls::impl_type_path(&meta);
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#type_path_impl
|
|
};
|
|
})
|
|
}
|