# Objective Currently, reflecting a generic type provides no information about the generic parameters. This means that you can't get access to the type of `T` in `Foo<T>` without creating custom type data (we do this for [`ReflectHandle`](https://docs.rs/bevy/0.14.2/bevy/asset/struct.ReflectHandle.html#method.asset_type_id)). ## Solution This PR makes it so that generic type parameters and generic const parameters are tracked in a `Generics` struct stored on the `TypeInfo` for a type. For example, `struct Foo<T, const N: usize>` will store `T` and `N` as a `TypeParamInfo` and `ConstParamInfo`, respectively. The stored information includes: - The name of the generic parameter (i.e. `T`, `N`, etc.) - The type of the generic parameter (remember that we're dealing with monomorphized types, so this will actually be a concrete type) - The default type/value, if any (e.g. `f32` in `T = f32` or `10` in `const N: usize = 10`) ### Caveats The only requirement for this to work is that the user does not opt-out of the automatic `TypePath` derive with `#[reflect(type_path = false)]`. Doing so prevents the macro code from 100% knowing that the generic type implements `TypePath`. This in turn means the generated `Typed` impl can't add generics to the type. There are two solutions for this—both of which I think we should explore in a future PR: 1. We could just not use `TypePath`. This would mean that we can't store the `Type` of the generic, but we can at least store the `TypeId`. 2. We could provide a way to opt out of the automatic `Typed` derive with a `#[reflect(typed = false)]` attribute. This would allow users to manually implement `Typed` to add whatever generic information they need (e.g. skipping a parameter that can't implement `TypePath` while the rest can). I originally thought about making `Generics` an enum with `Generic`, `NonGeneric`, and `Unavailable` variants to signify whether there are generics, no generics, or generics that cannot be added due to opting out of `TypePath`. I ultimately decided against this as I think it adds a bit too much complexity for such an uncommon problem. Additionally, user's don't necessarily _have_ to know the generics of a type, so just skipping them should generally be fine for now. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` --- ## Showcase You can now access generic parameters via `TypeInfo`! ```rust #[derive(Reflect)] struct MyStruct<T, const N: usize>([T; N]); let generics = MyStruct::<f32, 10>::type_info().generics(); // Get by index: let t = generics.get(0).unwrap(); assert_eq!(t.name(), "T"); assert!(t.ty().is::<f32>()); assert!(!t.is_const()); // Or by name: let n = generics.get_named("N").unwrap(); assert_eq!(n.name(), "N"); assert!(n.ty().is::<usize>()); assert!(n.is_const()); ``` You can even access parameter defaults: ```rust #[derive(Reflect)] struct MyStruct<T = String, const N: usize = 10>([T; N]); let generics = MyStruct::<f32, 5>::type_info().generics(); let GenericInfo::Type(info) = generics.get_named("T").unwrap() else { panic!("expected a type parameter"); }; let default = info.default().unwrap(); assert!(default.is::<String>()); let GenericInfo::Const(info) = generics.get_named("N").unwrap() else { panic!("expected a const parameter"); }; let default = info.default().unwrap(); assert_eq!(default.downcast_ref::<usize>().unwrap(), &10); ```
304 lines
12 KiB
Rust
304 lines
12 KiB
Rust
//! Helpers for working with Bevy reflection.
|
|
|
|
use crate::TypeInfo;
|
|
use bevy_utils::{FixedState, NoOpHash, TypeIdMap};
|
|
use core::{
|
|
any::{Any, TypeId},
|
|
hash::BuildHasher,
|
|
};
|
|
use std::sync::{OnceLock, PoisonError, RwLock};
|
|
|
|
/// A type that can be stored in a ([`Non`])[`GenericTypeCell`].
|
|
///
|
|
/// [`Non`]: NonGenericTypeCell
|
|
pub trait TypedProperty: sealed::Sealed {
|
|
type Stored: 'static;
|
|
}
|
|
|
|
/// Used to store a [`String`] in a [`GenericTypePathCell`] as part of a [`TypePath`] implementation.
|
|
///
|
|
/// [`TypePath`]: crate::TypePath
|
|
pub struct TypePathComponent;
|
|
|
|
mod sealed {
|
|
use super::{TypeInfo, TypePathComponent, TypedProperty};
|
|
|
|
pub trait Sealed {}
|
|
|
|
impl Sealed for TypeInfo {}
|
|
impl Sealed for TypePathComponent {}
|
|
|
|
impl TypedProperty for TypeInfo {
|
|
type Stored = Self;
|
|
}
|
|
|
|
impl TypedProperty for TypePathComponent {
|
|
type Stored = String;
|
|
}
|
|
}
|
|
|
|
/// A container for [`TypeInfo`] over non-generic types, allowing instances to be stored statically.
|
|
///
|
|
/// This is specifically meant for use with _non_-generic types. If your type _is_ generic,
|
|
/// then use [`GenericTypeCell`] instead. Otherwise, it will not take into account all
|
|
/// monomorphizations of your type.
|
|
///
|
|
/// Non-generic [`TypePath`]s should be trivially generated with string literals and [`concat!`].
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```
|
|
/// # use std::any::Any;
|
|
/// # use bevy_reflect::{DynamicTypePath, NamedField, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, Typed, TypeInfo, TypePath, ApplyError};
|
|
/// use bevy_reflect::utility::NonGenericTypeInfoCell;
|
|
///
|
|
/// struct Foo {
|
|
/// bar: i32
|
|
/// }
|
|
///
|
|
/// impl Typed for Foo {
|
|
/// fn type_info() -> &'static TypeInfo {
|
|
/// static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
|
|
/// CELL.get_or_set(|| {
|
|
/// let fields = [NamedField::new::<i32>("bar")];
|
|
/// let info = StructInfo::new::<Self>(&fields);
|
|
/// TypeInfo::Struct(info)
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// # impl TypePath for Foo {
|
|
/// # fn type_path() -> &'static str { todo!() }
|
|
/// # fn short_type_path() -> &'static str { todo!() }
|
|
/// # }
|
|
/// # impl PartialReflect for Foo {
|
|
/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
|
|
/// # fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
|
|
/// # fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
|
|
/// # fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
|
|
/// # fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
|
|
/// # fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
|
|
/// # fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
|
|
/// # fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
|
|
/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
|
|
/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
|
|
/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
|
|
/// # fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
|
|
/// # }
|
|
/// # impl Reflect for Foo {
|
|
/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
|
|
/// # fn as_any(&self) -> &dyn Any { todo!() }
|
|
/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
|
|
/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
|
|
/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
|
|
/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
|
|
/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
|
|
/// # }
|
|
/// ```
|
|
///
|
|
/// [`TypePath`]: crate::TypePath
|
|
pub struct NonGenericTypeCell<T: TypedProperty>(OnceLock<T::Stored>);
|
|
|
|
/// See [`NonGenericTypeCell`].
|
|
pub type NonGenericTypeInfoCell = NonGenericTypeCell<TypeInfo>;
|
|
|
|
impl<T: TypedProperty> NonGenericTypeCell<T> {
|
|
/// Initialize a [`NonGenericTypeCell`] for non-generic types.
|
|
pub const fn new() -> Self {
|
|
Self(OnceLock::new())
|
|
}
|
|
|
|
/// Returns a reference to the [`TypedProperty`] stored in the cell.
|
|
///
|
|
/// If there is no entry found, a new one will be generated from the given function.
|
|
pub fn get_or_set<F>(&self, f: F) -> &T::Stored
|
|
where
|
|
F: FnOnce() -> T::Stored,
|
|
{
|
|
self.0.get_or_init(f)
|
|
}
|
|
}
|
|
|
|
impl<T: TypedProperty> Default for NonGenericTypeCell<T> {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// A container for [`TypedProperty`] over generic types, allowing instances to be stored statically.
|
|
///
|
|
/// This is specifically meant for use with generic types. If your type isn't generic,
|
|
/// then use [`NonGenericTypeCell`] instead as it should be much more performant.
|
|
///
|
|
/// `#[derive(TypePath)]` and [`impl_type_path`] should always be used over [`GenericTypePathCell`]
|
|
/// where possible.
|
|
///
|
|
/// ## Examples
|
|
///
|
|
/// Implementing [`TypeInfo`] with generics.
|
|
///
|
|
/// ```
|
|
/// # use std::any::Any;
|
|
/// # use bevy_reflect::{DynamicTypePath, PartialReflect, Reflect, ReflectMut, ReflectOwned, ReflectRef, TupleStructInfo, Typed, TypeInfo, TypePath, UnnamedField, ApplyError, Generics, TypeParamInfo};
|
|
/// use bevy_reflect::utility::GenericTypeInfoCell;
|
|
///
|
|
/// struct Foo<T>(T);
|
|
///
|
|
/// impl<T: Reflect + Typed + TypePath> Typed for Foo<T> {
|
|
/// fn type_info() -> &'static TypeInfo {
|
|
/// static CELL: GenericTypeInfoCell = GenericTypeInfoCell::new();
|
|
/// CELL.get_or_insert::<Self, _>(|| {
|
|
/// let fields = [UnnamedField::new::<T>(0)];
|
|
/// let info = TupleStructInfo::new::<Self>(&fields)
|
|
/// .with_generics(Generics::from_iter([TypeParamInfo::new::<T>("T")]));
|
|
/// TypeInfo::TupleStruct(info)
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// # impl<T: TypePath> TypePath for Foo<T> {
|
|
/// # fn type_path() -> &'static str { todo!() }
|
|
/// # fn short_type_path() -> &'static str { todo!() }
|
|
/// # }
|
|
/// # impl<T: PartialReflect + TypePath> PartialReflect for Foo<T> {
|
|
/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
|
|
/// # fn into_partial_reflect(self: Box<Self>) -> Box<dyn PartialReflect> { todo!() }
|
|
/// # fn as_partial_reflect(&self) -> &dyn PartialReflect { todo!() }
|
|
/// # fn as_partial_reflect_mut(&mut self) -> &mut dyn PartialReflect { todo!() }
|
|
/// # fn try_into_reflect(self: Box<Self>) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>> { todo!() }
|
|
/// # fn try_as_reflect(&self) -> Option<&dyn Reflect> { todo!() }
|
|
/// # fn try_as_reflect_mut(&mut self) -> Option<&mut dyn Reflect> { todo!() }
|
|
/// # fn try_apply(&mut self, value: &dyn PartialReflect) -> Result<(), ApplyError> { todo!() }
|
|
/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
|
|
/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
|
|
/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
|
|
/// # fn clone_value(&self) -> Box<dyn PartialReflect> { todo!() }
|
|
/// # }
|
|
/// # impl<T: Reflect + Typed + TypePath> Reflect for Foo<T> {
|
|
/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
|
|
/// # fn as_any(&self) -> &dyn Any { todo!() }
|
|
/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
|
|
/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
|
|
/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
|
|
/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
|
|
/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
|
|
/// # }
|
|
/// ```
|
|
///
|
|
/// Implementing [`TypePath`] with generics.
|
|
///
|
|
/// ```
|
|
/// # use std::any::Any;
|
|
/// # use bevy_reflect::TypePath;
|
|
/// use bevy_reflect::utility::GenericTypePathCell;
|
|
///
|
|
/// struct Foo<T>(T);
|
|
///
|
|
/// impl<T: TypePath> TypePath for Foo<T> {
|
|
/// fn type_path() -> &'static str {
|
|
/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
/// CELL.get_or_insert::<Self, _>(|| format!("my_crate::foo::Foo<{}>", T::type_path()))
|
|
/// }
|
|
///
|
|
/// fn short_type_path() -> &'static str {
|
|
/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
|
|
/// CELL.get_or_insert::<Self, _>(|| format!("Foo<{}>", T::short_type_path()))
|
|
/// }
|
|
///
|
|
/// fn type_ident() -> Option<&'static str> {
|
|
/// Some("Foo")
|
|
/// }
|
|
///
|
|
/// fn module_path() -> Option<&'static str> {
|
|
/// Some("my_crate::foo")
|
|
/// }
|
|
///
|
|
/// fn crate_name() -> Option<&'static str> {
|
|
/// Some("my_crate")
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
/// [`impl_type_path`]: crate::impl_type_path
|
|
/// [`TypePath`]: crate::TypePath
|
|
pub struct GenericTypeCell<T: TypedProperty>(RwLock<TypeIdMap<&'static T::Stored>>);
|
|
|
|
/// See [`GenericTypeCell`].
|
|
pub type GenericTypeInfoCell = GenericTypeCell<TypeInfo>;
|
|
/// See [`GenericTypeCell`].
|
|
pub type GenericTypePathCell = GenericTypeCell<TypePathComponent>;
|
|
|
|
impl<T: TypedProperty> GenericTypeCell<T> {
|
|
/// Initialize a [`GenericTypeCell`] for generic types.
|
|
pub const fn new() -> Self {
|
|
Self(RwLock::new(TypeIdMap::with_hasher(NoOpHash)))
|
|
}
|
|
|
|
/// Returns a reference to the [`TypedProperty`] stored in the cell.
|
|
///
|
|
/// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
|
|
/// If there is no entry found, a new one will be generated from the given function.
|
|
pub fn get_or_insert<G, F>(&self, f: F) -> &T::Stored
|
|
where
|
|
G: Any + ?Sized,
|
|
F: FnOnce() -> T::Stored,
|
|
{
|
|
self.get_or_insert_by_type_id(TypeId::of::<G>(), f)
|
|
}
|
|
|
|
/// Returns a reference to the [`TypedProperty`] stored in the cell, if any.
|
|
///
|
|
/// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
|
|
fn get_by_type_id(&self, type_id: TypeId) -> Option<&T::Stored> {
|
|
self.0
|
|
.read()
|
|
.unwrap_or_else(PoisonError::into_inner)
|
|
.get(&type_id)
|
|
.copied()
|
|
}
|
|
|
|
/// Returns a reference to the [`TypedProperty`] stored in the cell.
|
|
///
|
|
/// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
|
|
/// If there is no entry found, a new one will be generated from the given function.
|
|
fn get_or_insert_by_type_id<F>(&self, type_id: TypeId, f: F) -> &T::Stored
|
|
where
|
|
F: FnOnce() -> T::Stored,
|
|
{
|
|
match self.get_by_type_id(type_id) {
|
|
Some(info) => info,
|
|
None => self.insert_by_type_id(type_id, f()),
|
|
}
|
|
}
|
|
|
|
fn insert_by_type_id(&self, type_id: TypeId, value: T::Stored) -> &T::Stored {
|
|
self.0
|
|
.write()
|
|
.unwrap_or_else(PoisonError::into_inner)
|
|
.entry(type_id)
|
|
.insert({
|
|
// We leak here in order to obtain a `&'static` reference.
|
|
// Otherwise, we won't be able to return a reference due to the `RwLock`.
|
|
// This should be okay, though, since we expect it to remain statically
|
|
// available over the course of the application.
|
|
Box::leak(Box::new(value))
|
|
})
|
|
.get()
|
|
}
|
|
}
|
|
|
|
impl<T: TypedProperty> Default for GenericTypeCell<T> {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// Deterministic fixed state hasher to be used by implementors of [`Reflect::reflect_hash`].
|
|
///
|
|
/// Hashes should be deterministic across processes so hashes can be used as
|
|
/// checksums for saved scenes, rollback snapshots etc. This function returns
|
|
/// such a hasher.
|
|
///
|
|
/// [`Reflect::reflect_hash`]: crate::Reflect
|
|
#[inline]
|
|
pub fn reflect_hasher() -> bevy_utils::AHasher {
|
|
FixedState.build_hasher()
|
|
}
|