bevy/crates/bevy_utils/src/lib.rs
Clar Fon 711246aa34
Update hashbrown to 0.15 (#15801)
Updating dependencies; adopted version of #15696. (Supercedes #15696.)

Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.

One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.

## Migration Guide

`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
2024-12-10 19:45:50 +00:00

478 lines
14 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![expect(
unsafe_code,
reason = "Some utilities, such as futures and cells, require unsafe code."
)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
#![cfg_attr(not(feature = "std"), no_std)]
//! General utilities for first-party [Bevy] engine crates.
//!
//! [Bevy]: https://bevyengine.org/
#[cfg(feature = "alloc")]
extern crate alloc;
/// The utilities prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
pub use crate::default;
}
pub mod futures;
pub mod synccell;
pub mod syncunsafecell;
mod default;
mod object_safe;
pub use object_safe::assert_object_safe;
mod once;
#[cfg(feature = "std")]
mod parallel_queue;
mod time;
/// For when you want a deterministic hasher.
///
/// Seed was randomly generated with a fair dice roll. Guaranteed to be random:
/// <https://github.com/bevyengine/bevy/pull/1268/files#r560918426>
const FIXED_HASHER: FixedState =
FixedState::with_seed(0b1001010111101110000001001100010000000011001001101011001001111000);
/// Deterministic hasher based upon a random but fixed state.
#[derive(Copy, Clone, Default, Debug)]
pub struct FixedHasher;
impl BuildHasher for FixedHasher {
type Hasher = DefaultHasher;
#[inline]
fn build_hasher(&self) -> Self::Hasher {
FIXED_HASHER.build_hasher()
}
}
pub use default::default;
pub use foldhash::fast::{FixedState, FoldHasher as DefaultHasher, RandomState};
#[cfg(feature = "alloc")]
pub use hashbrown;
#[cfg(feature = "std")]
pub use parallel_queue::*;
pub use time::*;
pub use tracing;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "alloc")]
use core::any::TypeId;
use core::{
fmt::Debug,
hash::{BuildHasher, Hash, Hasher},
marker::PhantomData,
mem::ManuallyDrop,
ops::Deref,
};
#[cfg(not(target_arch = "wasm32"))]
mod conditional_send {
/// Use [`ConditionalSend`] to mark an optional Send trait bound. Useful as on certain platforms (eg. Wasm),
/// futures aren't Send.
pub trait ConditionalSend: Send {}
impl<T: Send> ConditionalSend for T {}
}
#[cfg(target_arch = "wasm32")]
#[expect(missing_docs, reason = "Not all docs are written yet (#3492).")]
mod conditional_send {
pub trait ConditionalSend {}
impl<T> ConditionalSend for T {}
}
pub use conditional_send::*;
/// Use [`ConditionalSendFuture`] for a future with an optional Send trait bound, as on certain platforms (eg. Wasm),
/// futures aren't Send.
pub trait ConditionalSendFuture: core::future::Future + ConditionalSend {}
impl<T: core::future::Future + ConditionalSend> ConditionalSendFuture for T {}
/// An owned and dynamically typed Future used when you can't statically type your result or need to add some indirection.
#[cfg(feature = "alloc")]
pub type BoxedFuture<'a, T> = core::pin::Pin<Box<dyn ConditionalSendFuture<Output = T> + 'a>>;
/// A shortcut alias for [`hashbrown::hash_map::Entry`].
#[cfg(feature = "alloc")]
pub type Entry<'a, K, V, S = FixedHasher> = hashbrown::hash_map::Entry<'a, K, V, S>;
/// A [`HashMap`][hashbrown::HashMap] implementing a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// The hashing algorithm is designed for performance
/// and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashMap`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
#[cfg(feature = "alloc")]
pub type HashMap<K, V, S = FixedHasher> = hashbrown::HashMap<K, V, S>;
/// A stable hash map implementing a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// The hashing algorithm is designed for performance
/// and is NOT cryptographically secure.
#[deprecated(
note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashMap<K, V, FixedHasher>"
)]
#[cfg(feature = "alloc")]
pub type StableHashMap<K, V> = hashbrown::HashMap<K, V, FixedHasher>;
/// A [`HashSet`][hashbrown::HashSet] implementing a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// The hashing algorithm is designed for performance
/// and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashSet`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
#[cfg(feature = "alloc")]
pub type HashSet<K, S = FixedHasher> = hashbrown::HashSet<K, S>;
/// A stable hash set using a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// The hashing algorithm is designed for performance
/// and is NOT cryptographically secure.
#[deprecated(
note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashSet<K, FixedHasher>"
)]
#[cfg(feature = "alloc")]
pub type StableHashSet<K> = hashbrown::HashSet<K, FixedHasher>;
/// A pre-hashed value of a specific type. Pre-hashing enables memoization of hashes that are expensive to compute.
///
/// It also enables faster [`PartialEq`] comparisons by short circuiting on hash equality.
/// See [`PassHash`] and [`PassHasher`] for a "pass through" [`BuildHasher`] and [`Hasher`] implementation
/// designed to work with [`Hashed`]
/// See [`PreHashMap`] for a hashmap pre-configured to use [`Hashed`] keys.
pub struct Hashed<V, S = FixedHasher> {
hash: u64,
value: V,
marker: PhantomData<S>,
}
impl<V: Hash, H: BuildHasher + Default> Hashed<V, H> {
/// Pre-hashes the given value using the [`BuildHasher`] configured in the [`Hashed`] type.
pub fn new(value: V) -> Self {
Self {
hash: H::default().hash_one(&value),
value,
marker: PhantomData,
}
}
/// The pre-computed hash.
#[inline]
pub fn hash(&self) -> u64 {
self.hash
}
}
impl<V, H> Hash for Hashed<V, H> {
#[inline]
fn hash<R: Hasher>(&self, state: &mut R) {
state.write_u64(self.hash);
}
}
impl<V, H> Deref for Hashed<V, H> {
type Target = V;
#[inline]
fn deref(&self) -> &Self::Target {
&self.value
}
}
impl<V: PartialEq, H> PartialEq for Hashed<V, H> {
/// A fast impl of [`PartialEq`] that first checks that `other`'s pre-computed hash
/// matches this value's pre-computed hash.
#[inline]
fn eq(&self, other: &Self) -> bool {
self.hash == other.hash && self.value.eq(&other.value)
}
}
impl<V: Debug, H> Debug for Hashed<V, H> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Hashed")
.field("hash", &self.hash)
.field("value", &self.value)
.finish()
}
}
impl<V: Clone, H> Clone for Hashed<V, H> {
#[inline]
fn clone(&self) -> Self {
Self {
hash: self.hash,
value: self.value.clone(),
marker: PhantomData,
}
}
}
impl<V: Copy, H> Copy for Hashed<V, H> {}
impl<V: Eq, H> Eq for Hashed<V, H> {}
/// A [`BuildHasher`] that results in a [`PassHasher`].
#[derive(Default, Clone)]
pub struct PassHash;
impl BuildHasher for PassHash {
type Hasher = PassHasher;
fn build_hasher(&self) -> Self::Hasher {
PassHasher::default()
}
}
/// A no-op hash that only works on `u64`s. Will panic if attempting to
/// hash a type containing non-u64 fields.
#[derive(Debug, Default)]
pub struct PassHasher {
hash: u64,
}
impl Hasher for PassHasher {
#[inline]
fn finish(&self) -> u64 {
self.hash
}
fn write(&mut self, _bytes: &[u8]) {
panic!("can only hash u64 using PassHasher");
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.hash = i;
}
}
/// A [`HashMap`] pre-configured to use [`Hashed`] keys and [`PassHash`] passthrough hashing.
/// Iteration order only depends on the order of insertions and deletions.
#[cfg(feature = "alloc")]
pub type PreHashMap<K, V> = hashbrown::HashMap<Hashed<K>, V, PassHash>;
/// Extension methods intended to add functionality to [`PreHashMap`].
#[cfg(feature = "alloc")]
pub trait PreHashMapExt<K, V> {
/// Tries to get or insert the value for the given `key` using the pre-computed hash first.
/// If the [`PreHashMap`] does not already contain the `key`, it will clone it and insert
/// the value returned by `func`.
fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V;
}
#[cfg(feature = "alloc")]
impl<K: Hash + Eq + PartialEq + Clone, V> PreHashMapExt<K, V> for PreHashMap<K, V> {
#[inline]
fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V {
use hashbrown::hash_map::RawEntryMut;
let entry = self
.raw_entry_mut()
.from_key_hashed_nocheck(key.hash(), key);
match entry {
RawEntryMut::Occupied(entry) => entry.into_mut(),
RawEntryMut::Vacant(entry) => {
let (_, value) = entry.insert_hashed_nocheck(key.hash(), key.clone(), func());
value
}
}
}
}
/// A specialized hashmap type with Key of [`TypeId`]
/// Iteration order only depends on the order of insertions and deletions.
#[cfg(feature = "alloc")]
pub type TypeIdMap<V> = hashbrown::HashMap<TypeId, V, NoOpHash>;
/// [`BuildHasher`] for types that already contain a high-quality hash.
#[derive(Clone, Default)]
pub struct NoOpHash;
impl BuildHasher for NoOpHash {
type Hasher = NoOpHasher;
fn build_hasher(&self) -> Self::Hasher {
NoOpHasher(0)
}
}
#[doc(hidden)]
pub struct NoOpHasher(u64);
// This is for types that already contain a high-quality hash and want to skip
// re-hashing that hash.
impl Hasher for NoOpHasher {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, bytes: &[u8]) {
// This should never be called by consumers. Prefer to call `write_u64` instead.
// Don't break applications (slower fallback, just check in test):
self.0 = bytes.iter().fold(self.0, |hash, b| {
hash.rotate_left(8).wrapping_add(*b as u64)
});
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
}
/// A type which calls a function when dropped.
/// This can be used to ensure that cleanup code is run even in case of a panic.
///
/// Note that this only works for panics that [unwind](https://doc.rust-lang.org/nomicon/unwinding.html)
/// -- any code within `OnDrop` will be skipped if a panic does not unwind.
/// In most cases, this will just work.
///
/// # Examples
///
/// ```
/// # use bevy_utils::OnDrop;
/// # fn test_panic(do_panic: bool, log: impl FnOnce(&str)) {
/// // This will print a message when the variable `_catch` gets dropped,
/// // even if a panic occurs before we reach the end of this scope.
/// // This is similar to a `try ... catch` block in languages such as C++.
/// let _catch = OnDrop::new(|| log("Oops, a panic occurred and this function didn't complete!"));
///
/// // Some code that may panic...
/// // ...
/// # if do_panic { panic!() }
///
/// // Make sure the message only gets printed if a panic occurs.
/// // If we remove this line, then the message will be printed regardless of whether a panic occurs
/// // -- similar to a `try ... finally` block.
/// core::mem::forget(_catch);
/// # }
/// #
/// # test_panic(false, |_| unreachable!());
/// # let mut did_log = false;
/// # std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
/// # test_panic(true, |_| did_log = true);
/// # }));
/// # assert!(did_log);
/// ```
pub struct OnDrop<F: FnOnce()> {
callback: ManuallyDrop<F>,
}
impl<F: FnOnce()> OnDrop<F> {
/// Returns an object that will invoke the specified callback when dropped.
pub fn new(callback: F) -> Self {
Self {
callback: ManuallyDrop::new(callback),
}
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
// SAFETY: We may move out of `self`, since this instance can never be observed after it's dropped.
let callback = unsafe { ManuallyDrop::take(&mut self.callback) };
callback();
}
}
/// Calls the [`tracing::info!`] macro on a value.
pub fn info<T: Debug>(data: T) {
tracing::info!("{:?}", data);
}
/// Calls the [`tracing::debug!`] macro on a value.
pub fn dbg<T: Debug>(data: T) {
tracing::debug!("{:?}", data);
}
/// Processes a [`Result`] by calling the [`tracing::warn!`] macro in case of an [`Err`] value.
pub fn warn<E: Debug>(result: Result<(), E>) {
if let Err(warn) = result {
tracing::warn!("{:?}", warn);
}
}
/// Processes a [`Result`] by calling the [`tracing::error!`] macro in case of an [`Err`] value.
pub fn error<E: Debug>(result: Result<(), E>) {
if let Err(error) = result {
tracing::error!("{:?}", error);
}
}
/// Like [`tracing::trace`], but conditional on cargo feature `detailed_trace`.
#[macro_export]
macro_rules! detailed_trace {
($($tts:tt)*) => {
if cfg!(feature = "detailed_trace") {
$crate::tracing::trace!($($tts)*);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use static_assertions::assert_impl_all;
// Check that the HashMaps are Clone if the key/values are Clone
assert_impl_all!(PreHashMap::<u64, usize>: Clone);
#[test]
fn fast_typeid_hash() {
struct Hasher;
impl core::hash::Hasher for Hasher {
fn finish(&self) -> u64 {
0
}
fn write(&mut self, _: &[u8]) {
panic!("Hashing of core::any::TypeId changed");
}
fn write_u64(&mut self, _: u64) {}
}
Hash::hash(&TypeId::of::<()>(), &mut Hasher);
}
#[cfg(feature = "alloc")]
#[test]
fn stable_hash_within_same_program_execution() {
use alloc::vec::Vec;
let mut map_1 = <HashMap<_, _>>::default();
let mut map_2 = <HashMap<_, _>>::default();
for i in 1..10 {
map_1.insert(i, i);
map_2.insert(i, i);
}
assert_eq!(
map_1.iter().collect::<Vec<_>>(),
map_2.iter().collect::<Vec<_>>()
);
}
}