bevy/crates/bevy_render/src/camera/camera.rs
st0rmbtw afe8b5f20d
Replace all usages of texture_descritor.size.* with the helper methods (#10227)
# Objective

A follow-up PR for https://github.com/bevyengine/bevy/pull/10221

## Changelog

Replaced usages of texture_descriptor.size with the helper methods of
`Image` through the entire engine codebase
2023-10-23 20:49:02 +00:00

821 lines
34 KiB
Rust

use crate::{
camera::CameraProjection,
camera::{ManualTextureViewHandle, ManualTextureViews},
prelude::Image,
render_asset::RenderAssets,
render_resource::TextureView,
view::{ColorGrading, ExtractedView, ExtractedWindows, RenderLayers, VisibleEntities},
Extract,
};
use bevy_asset::{AssetEvent, AssetId, Assets, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
change_detection::DetectChanges,
component::Component,
entity::Entity,
event::EventReader,
prelude::With,
reflect::ReflectComponent,
system::{Commands, Query, Res, ResMut, Resource},
};
use bevy_log::warn;
use bevy_math::{vec2, Mat4, Ray, Rect, URect, UVec2, UVec4, Vec2, Vec3};
use bevy_reflect::prelude::*;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{HashMap, HashSet};
use bevy_window::{
NormalizedWindowRef, PrimaryWindow, Window, WindowCreated, WindowRef, WindowResized,
};
use std::{borrow::Cow, ops::Range};
use wgpu::{BlendState, LoadOp, TextureFormat};
/// Render viewport configuration for the [`Camera`] component.
///
/// The viewport defines the area on the render target to which the camera renders its image.
/// You can overlay multiple cameras in a single window using viewports to create effects like
/// split screen, minimaps, and character viewers.
#[derive(Reflect, Debug, Clone)]
#[reflect(Default)]
pub struct Viewport {
/// The physical position to render this viewport to within the [`RenderTarget`] of this [`Camera`].
/// (0,0) corresponds to the top-left corner
pub physical_position: UVec2,
/// The physical size of the viewport rectangle to render to within the [`RenderTarget`] of this [`Camera`].
/// The origin of the rectangle is in the top-left corner.
pub physical_size: UVec2,
/// The minimum and maximum depth to render (on a scale from 0.0 to 1.0).
pub depth: Range<f32>,
}
impl Default for Viewport {
fn default() -> Self {
Self {
physical_position: Default::default(),
physical_size: Default::default(),
depth: 0.0..1.0,
}
}
}
/// Information about the current [`RenderTarget`].
#[derive(Default, Debug, Clone)]
pub struct RenderTargetInfo {
/// The physical size of this render target (ignores scale factor).
pub physical_size: UVec2,
/// The scale factor of this render target.
pub scale_factor: f64,
}
/// Holds internally computed [`Camera`] values.
#[derive(Default, Debug, Clone)]
pub struct ComputedCameraValues {
projection_matrix: Mat4,
target_info: Option<RenderTargetInfo>,
// position and size of the `Viewport`
old_viewport_size: Option<UVec2>,
}
/// The defining [`Component`] for camera entities,
/// storing information about how and what to render through this camera.
///
/// The [`Camera`] component is added to an entity to define the properties of the viewpoint from
/// which rendering occurs. It defines the position of the view to render, the projection method
/// to transform the 3D objects into a 2D image, as well as the render target into which that image
/// is produced.
///
/// Adding a camera is typically done by adding a bundle, either the `Camera2dBundle` or the
/// `Camera3dBundle`.
#[derive(Component, Debug, Reflect, Clone)]
#[reflect(Component)]
pub struct Camera {
/// If set, this camera will render to the given [`Viewport`] rectangle within the configured [`RenderTarget`].
pub viewport: Option<Viewport>,
/// Cameras with a higher order are rendered later, and thus on top of lower order cameras.
pub order: isize,
/// If this is set to `true`, this camera will be rendered to its specified [`RenderTarget`]. If `false`, this
/// camera will not be rendered.
pub is_active: bool,
/// Computed values for this camera, such as the projection matrix and the render target size.
#[reflect(ignore)]
pub computed: ComputedCameraValues,
/// The "target" that this camera will render to.
#[reflect(ignore)]
pub target: RenderTarget,
/// If this is set to `true`, the camera will use an intermediate "high dynamic range" render texture.
/// This allows rendering with a wider range of lighting values.
pub hdr: bool,
// todo: reflect this when #6042 lands
/// The [`CameraOutputMode`] for this camera.
#[reflect(ignore)]
pub output_mode: CameraOutputMode,
/// If this is enabled, a previous camera exists that shares this camera's render target, and this camera has MSAA enabled, then the previous camera's
/// outputs will be written to the intermediate multi-sampled render target textures for this camera. This enables cameras with MSAA enabled to
/// "write their results on top" of previous camera results, and include them as a part of their render results. This is enabled by default to ensure
/// cameras with MSAA enabled layer their results in the same way as cameras without MSAA enabled by default.
pub msaa_writeback: bool,
}
impl Default for Camera {
fn default() -> Self {
Self {
is_active: true,
order: 0,
viewport: None,
computed: Default::default(),
target: Default::default(),
output_mode: Default::default(),
hdr: false,
msaa_writeback: true,
}
}
}
impl Camera {
/// Converts a physical size in this `Camera` to a logical size.
#[inline]
pub fn to_logical(&self, physical_size: UVec2) -> Option<Vec2> {
let scale = self.computed.target_info.as_ref()?.scale_factor;
Some((physical_size.as_dvec2() / scale).as_vec2())
}
/// The rendered physical bounds [`URect`] of the camera. If the `viewport` field is
/// set to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to
/// the full physical rect of the current [`RenderTarget`].
#[inline]
pub fn physical_viewport_rect(&self) -> Option<URect> {
let min = self
.viewport
.as_ref()
.map(|v| v.physical_position)
.unwrap_or(UVec2::ZERO);
let max = min + self.physical_viewport_size()?;
Some(URect { min, max })
}
/// The rendered logical bounds [`Rect`] of the camera. If the `viewport` field is set to
/// [`Some`], this will be the rect of that custom viewport. Otherwise it will default to the
/// full logical rect of the current [`RenderTarget`].
#[inline]
pub fn logical_viewport_rect(&self) -> Option<Rect> {
let URect { min, max } = self.physical_viewport_rect()?;
Some(Rect {
min: self.to_logical(min)?,
max: self.to_logical(max)?,
})
}
/// The logical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full logical size
/// of the current [`RenderTarget`].
/// For logic that requires the full logical size of the
/// [`RenderTarget`], prefer [`Camera::logical_target_size`].
///
/// Returns `None` if either:
/// - the function is called just after the `Camera` is created, before `camera_system` is executed,
/// - the [`RenderTarget`] isn't correctly set:
/// - it references the [`PrimaryWindow`](RenderTarget::Window) when there is none,
/// - it references a [`Window`](RenderTarget::Window) entity that doesn't exist or doesn't actually have a `Window` component,
/// - it references an [`Image`](RenderTarget::Image) that doesn't exist (invalid handle),
/// - it references a [`TextureView`](RenderTarget::TextureView) that doesn't exist (invalid handle).
#[inline]
pub fn logical_viewport_size(&self) -> Option<Vec2> {
self.viewport
.as_ref()
.and_then(|v| self.to_logical(v.physical_size))
.or_else(|| self.logical_target_size())
}
/// The physical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full physical size of
/// the current [`RenderTarget`].
/// For logic that requires the full physical size of the [`RenderTarget`], prefer [`Camera::physical_target_size`].
#[inline]
pub fn physical_viewport_size(&self) -> Option<UVec2> {
self.viewport
.as_ref()
.map(|v| v.physical_size)
.or_else(|| self.physical_target_size())
}
/// The full logical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::logical_viewport_size`].
#[inline]
pub fn logical_target_size(&self) -> Option<Vec2> {
self.computed
.target_info
.as_ref()
.and_then(|t| self.to_logical(t.physical_size))
}
/// The full physical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::physical_viewport_size`].
#[inline]
pub fn physical_target_size(&self) -> Option<UVec2> {
self.computed.target_info.as_ref().map(|t| t.physical_size)
}
/// The projection matrix computed using this camera's [`CameraProjection`].
#[inline]
pub fn projection_matrix(&self) -> Mat4 {
self.computed.projection_matrix
}
/// Given a position in world space, use the camera to compute the viewport-space coordinates.
///
/// To get the coordinates in Normalized Device Coordinates, you should use
/// [`world_to_ndc`](Self::world_to_ndc).
///
/// Returns `None` if any of these conditions occur:
/// - The computed coordinates are beyond the near or far plane
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The world coordinates cannot be mapped to the Normalized Device Coordinates. See [`world_to_ndc`](Camera::world_to_ndc)
/// May also panic if `glam_assert` is enabled. See [`world_to_ndc`](Camera::world_to_ndc).
#[doc(alias = "world_to_screen")]
pub fn world_to_viewport(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
let ndc_space_coords = self.world_to_ndc(camera_transform, world_position)?;
// NDC z-values outside of 0 < z < 1 are outside the (implicit) camera frustum and are thus not in viewport-space
if ndc_space_coords.z < 0.0 || ndc_space_coords.z > 1.0 {
return None;
}
// Once in NDC space, we can discard the z element and rescale x/y to fit the screen
let mut viewport_position = (ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_size;
// Flip the Y co-ordinate origin from the bottom to the top.
viewport_position.y = target_size.y - viewport_position.y;
Some(viewport_position)
}
/// Returns a ray originating from the camera, that passes through everything beyond `viewport_position`.
///
/// The resulting ray starts on the near plane of the camera.
///
/// If the camera's projection is orthographic the direction of the ray is always equal to `camera_transform.forward()`.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
///
/// Returns `None` if any of these conditions occur:
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The near or far plane cannot be computed. This can happen if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the projection matrix is null and `glam_assert` is enabled.
pub fn viewport_to_world(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Ray> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
// Using EPSILON because an ndc with Z = 0 returns NaNs.
let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));
(!world_near_plane.is_nan() && !world_far_plane.is_nan()).then_some(Ray {
origin: world_near_plane,
direction: (world_far_plane - world_near_plane).normalize(),
})
}
/// Returns a 2D world position computed from a position on this [`Camera`]'s viewport.
///
/// Useful for 2D cameras and other cameras with an orthographic projection pointing along the Z axis.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
///
/// Returns `None` if any of these conditions occur:
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The viewport position cannot be mapped to the world. See [`ndc_to_world`](Camera::ndc_to_world)
/// May panic. See [`ndc_to_world`](Camera::ndc_to_world).
pub fn viewport_to_world_2d(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let world_near_plane = self.ndc_to_world(camera_transform, ndc.extend(1.))?;
Some(world_near_plane.truncate())
}
/// Given a position in world space, use the camera's viewport to compute the Normalized Device Coordinates.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the coordinates in the render target's viewport dimensions, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
///
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the `camera_transform` contains `NAN` and the `glam_assert` feature is enabled.
pub fn world_to_ndc(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec3> {
// Build a transformation matrix to convert from world space to NDC using camera data
let world_to_ndc: Mat4 =
self.computed.projection_matrix * camera_transform.compute_matrix().inverse();
let ndc_space_coords: Vec3 = world_to_ndc.project_point3(world_position);
(!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
}
/// Given a position in Normalized Device Coordinates,
/// use the camera's viewport to compute the world space position.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the world space coordinates with the viewport position, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
///
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the projection matrix is null and `glam_assert` is enabled.
pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
// Build a transformation matrix to convert from NDC to world space using camera data
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_space_coords = ndc_to_world.project_point3(ndc);
(!world_space_coords.is_nan()).then_some(world_space_coords)
}
}
/// Control how this camera outputs once rendering is completed.
#[derive(Debug, Clone, Copy)]
pub enum CameraOutputMode {
/// Writes the camera output to configured render target.
Write {
/// The blend state that will be used by the pipeline that writes the intermediate render textures to the final render target texture.
blend_state: Option<BlendState>,
/// The color attachment load operation that will be used by the pipeline that writes the intermediate render textures to the final render
/// target texture.
color_attachment_load_op: wgpu::LoadOp<wgpu::Color>,
},
/// Skips writing the camera output to the configured render target. The output will remain in the
/// Render Target's "intermediate" textures, which a camera with a higher order should write to the render target
/// using [`CameraOutputMode::Write`]. The "skip" mode can easily prevent render results from being displayed, or cause
/// them to be lost. Only use this if you know what you are doing!
/// In camera setups with multiple active cameras rendering to the same RenderTarget, the Skip mode can be used to remove
/// unnecessary / redundant writes to the final output texture, removing unnecessary render passes.
Skip,
}
impl Default for CameraOutputMode {
fn default() -> Self {
CameraOutputMode::Write {
blend_state: None,
color_attachment_load_op: LoadOp::Clear(Default::default()),
}
}
}
/// Configures the [`RenderGraph`](crate::render_graph::RenderGraph) name assigned to be run for a given [`Camera`] entity.
#[derive(Component, Deref, DerefMut, Reflect, Default)]
#[reflect(Component)]
pub struct CameraRenderGraph(Cow<'static, str>);
impl CameraRenderGraph {
/// Creates a new [`CameraRenderGraph`] from any string-like type.
#[inline]
pub fn new<T: Into<Cow<'static, str>>>(name: T) -> Self {
Self(name.into())
}
/// Sets the graph name.
#[inline]
pub fn set<T: Into<Cow<'static, str>>>(&mut self, name: T) {
self.0 = name.into();
}
}
/// The "target" that a [`Camera`] will render to. For example, this could be a [`Window`]
/// swapchain or an [`Image`].
#[derive(Debug, Clone, Reflect)]
pub enum RenderTarget {
/// Window to which the camera's view is rendered.
Window(WindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
/// Texture View to which the camera's view is rendered.
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
TextureView(ManualTextureViewHandle),
}
/// Normalized version of the render target.
///
/// Once we have this we shouldn't need to resolve it down anymore.
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NormalizedRenderTarget {
/// Window to which the camera's view is rendered.
Window(NormalizedWindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
/// Texture View to which the camera's view is rendered.
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
TextureView(ManualTextureViewHandle),
}
impl Default for RenderTarget {
fn default() -> Self {
Self::Window(Default::default())
}
}
impl RenderTarget {
/// Normalize the render target down to a more concrete value, mostly used for equality comparisons.
pub fn normalize(&self, primary_window: Option<Entity>) -> Option<NormalizedRenderTarget> {
match self {
RenderTarget::Window(window_ref) => window_ref
.normalize(primary_window)
.map(NormalizedRenderTarget::Window),
RenderTarget::Image(handle) => Some(NormalizedRenderTarget::Image(handle.clone())),
RenderTarget::TextureView(id) => Some(NormalizedRenderTarget::TextureView(*id)),
}
}
}
impl NormalizedRenderTarget {
pub fn get_texture_view<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
manual_texture_views: &'a ManualTextureViews,
) -> Option<&'a TextureView> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture_view.as_ref()),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| &image.texture_view)
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| &tex.texture_view)
}
}
}
/// Retrieves the [`TextureFormat`] of this render target, if it exists.
pub fn get_texture_format<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
manual_texture_views: &'a ManualTextureViews,
) -> Option<TextureFormat> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture_format),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| image.texture_format)
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| tex.format)
}
}
}
pub fn get_render_target_info<'a>(
&self,
resolutions: impl IntoIterator<Item = (Entity, &'a Window)>,
images: &Assets<Image>,
manual_texture_views: &ManualTextureViews,
) -> Option<RenderTargetInfo> {
match self {
NormalizedRenderTarget::Window(window_ref) => resolutions
.into_iter()
.find(|(entity, _)| *entity == window_ref.entity())
.map(|(_, window)| RenderTargetInfo {
physical_size: UVec2::new(
window.resolution.physical_width(),
window.resolution.physical_height(),
),
scale_factor: window.resolution.scale_factor(),
}),
NormalizedRenderTarget::Image(image_handle) => {
let image = images.get(image_handle)?;
Some(RenderTargetInfo {
physical_size: image.size(),
scale_factor: 1.0,
})
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| RenderTargetInfo {
physical_size: tex.size,
scale_factor: 1.0,
})
}
}
}
// Check if this render target is contained in the given changed windows or images.
fn is_changed(
&self,
changed_window_ids: &HashSet<Entity>,
changed_image_handles: &HashSet<&AssetId<Image>>,
) -> bool {
match self {
NormalizedRenderTarget::Window(window_ref) => {
changed_window_ids.contains(&window_ref.entity())
}
NormalizedRenderTarget::Image(image_handle) => {
changed_image_handles.contains(&image_handle.id())
}
NormalizedRenderTarget::TextureView(_) => true,
}
}
}
/// System in charge of updating a [`Camera`] when its window or projection changes.
///
/// The system detects window creation and resize events to update the camera projection if
/// needed. It also queries any [`CameraProjection`] component associated with the same entity
/// as the [`Camera`] one, to automatically update the camera projection matrix.
///
/// The system function is generic over the camera projection type, and only instances of
/// [`OrthographicProjection`] and [`PerspectiveProjection`] are automatically added to
/// the app, as well as the runtime-selected [`Projection`].
/// The system runs during [`PostUpdate`](bevy_app::PostUpdate).
///
/// ## World Resources
///
/// [`Res<Assets<Image>>`](Assets<Image>) -- For cameras that render to an image, this resource is used to
/// inspect information about the render target. This system will not access any other image assets.
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
/// [`PerspectiveProjection`]: crate::camera::PerspectiveProjection
/// [`Projection`]: crate::camera::Projection
#[allow(clippy::too_many_arguments)]
pub fn camera_system<T: CameraProjection + Component>(
mut window_resized_events: EventReader<WindowResized>,
mut window_created_events: EventReader<WindowCreated>,
mut image_asset_events: EventReader<AssetEvent<Image>>,
primary_window: Query<Entity, With<PrimaryWindow>>,
windows: Query<(Entity, &Window)>,
images: Res<Assets<Image>>,
manual_texture_views: Res<ManualTextureViews>,
mut cameras: Query<(&mut Camera, &mut T)>,
) {
let primary_window = primary_window.iter().next();
let mut changed_window_ids = HashSet::new();
changed_window_ids.extend(window_created_events.read().map(|event| event.window));
changed_window_ids.extend(window_resized_events.read().map(|event| event.window));
let changed_image_handles: HashSet<&AssetId<Image>> = image_asset_events
.read()
.filter_map(|event| {
if let AssetEvent::Modified { id } = event {
Some(id)
} else {
None
}
})
.collect();
for (mut camera, mut camera_projection) in &mut cameras {
let viewport_size = camera
.viewport
.as_ref()
.map(|viewport| viewport.physical_size);
if let Some(normalized_target) = camera.target.normalize(primary_window) {
if normalized_target.is_changed(&changed_window_ids, &changed_image_handles)
|| camera.is_added()
|| camera_projection.is_changed()
|| camera.computed.old_viewport_size != viewport_size
{
camera.computed.target_info = normalized_target.get_render_target_info(
&windows,
&images,
&manual_texture_views,
);
if let Some(size) = camera.logical_viewport_size() {
camera_projection.update(size.x, size.y);
camera.computed.projection_matrix = camera_projection.get_projection_matrix();
}
}
}
if camera.computed.old_viewport_size != viewport_size {
camera.computed.old_viewport_size = viewport_size;
}
}
}
#[derive(Component, Debug)]
pub struct ExtractedCamera {
pub target: Option<NormalizedRenderTarget>,
pub physical_viewport_size: Option<UVec2>,
pub physical_target_size: Option<UVec2>,
pub viewport: Option<Viewport>,
pub render_graph: Cow<'static, str>,
pub order: isize,
pub output_mode: CameraOutputMode,
pub msaa_writeback: bool,
pub sorted_camera_index_for_target: usize,
}
pub fn extract_cameras(
mut commands: Commands,
query: Extract<
Query<(
Entity,
&Camera,
&CameraRenderGraph,
&GlobalTransform,
&VisibleEntities,
Option<&ColorGrading>,
Option<&TemporalJitter>,
Option<&RenderLayers>,
)>,
>,
primary_window: Extract<Query<Entity, With<PrimaryWindow>>>,
) {
let primary_window = primary_window.iter().next();
for (
entity,
camera,
camera_render_graph,
transform,
visible_entities,
color_grading,
temporal_jitter,
render_layers,
) in query.iter()
{
let color_grading = *color_grading.unwrap_or(&ColorGrading::default());
if !camera.is_active {
continue;
}
if let (
Some(URect {
min: viewport_origin,
..
}),
Some(viewport_size),
Some(target_size),
) = (
camera.physical_viewport_rect(),
camera.physical_viewport_size(),
camera.physical_target_size(),
) {
if target_size.x == 0 || target_size.y == 0 {
continue;
}
let mut commands = commands.get_or_spawn(entity);
commands.insert((
ExtractedCamera {
target: camera.target.normalize(primary_window),
viewport: camera.viewport.clone(),
physical_viewport_size: Some(viewport_size),
physical_target_size: Some(target_size),
render_graph: camera_render_graph.0.clone(),
order: camera.order,
output_mode: camera.output_mode,
msaa_writeback: camera.msaa_writeback,
// this will be set in sort_cameras
sorted_camera_index_for_target: 0,
},
ExtractedView {
projection: camera.projection_matrix(),
transform: *transform,
view_projection: None,
hdr: camera.hdr,
viewport: UVec4::new(
viewport_origin.x,
viewport_origin.y,
viewport_size.x,
viewport_size.y,
),
color_grading,
},
visible_entities.clone(),
));
if let Some(temporal_jitter) = temporal_jitter {
commands.insert(temporal_jitter.clone());
}
if let Some(render_layers) = render_layers {
commands.insert(*render_layers);
}
}
}
}
/// Cameras sorted by their order field. This is updated in the [`sort_cameras`] system.
#[derive(Resource, Default)]
pub struct SortedCameras(pub Vec<SortedCamera>);
pub struct SortedCamera {
pub entity: Entity,
pub order: isize,
pub target: Option<NormalizedRenderTarget>,
}
pub fn sort_cameras(
mut sorted_cameras: ResMut<SortedCameras>,
mut cameras: Query<(Entity, &mut ExtractedCamera)>,
) {
sorted_cameras.0.clear();
for (entity, camera) in cameras.iter() {
sorted_cameras.0.push(SortedCamera {
entity,
order: camera.order,
target: camera.target.clone(),
});
}
// sort by order and ensure within an order, RenderTargets of the same type are packed together
sorted_cameras
.0
.sort_by(|c1, c2| match c1.order.cmp(&c2.order) {
std::cmp::Ordering::Equal => c1.target.cmp(&c2.target),
ord => ord,
});
let mut previous_order_target = None;
let mut ambiguities = HashSet::new();
let mut target_counts = HashMap::new();
for sorted_camera in &mut sorted_cameras.0 {
let new_order_target = (sorted_camera.order, sorted_camera.target.clone());
if let Some(previous_order_target) = previous_order_target {
if previous_order_target == new_order_target {
ambiguities.insert(new_order_target.clone());
}
}
if let Some(target) = &sorted_camera.target {
let count = target_counts.entry(target.clone()).or_insert(0usize);
let (_, mut camera) = cameras.get_mut(sorted_camera.entity).unwrap();
camera.sorted_camera_index_for_target = *count;
*count += 1;
}
previous_order_target = Some(new_order_target);
}
if !ambiguities.is_empty() {
warn!(
"Camera order ambiguities detected for active cameras with the following priorities: {:?}. \
To fix this, ensure there is exactly one Camera entity spawned with a given order for a given RenderTarget. \
Ambiguities should be resolved because either (1) multiple active cameras were spawned accidentally, which will \
result in rendering multiple instances of the scene or (2) for cases where multiple active cameras is intentional, \
ambiguities could result in unpredictable render results.",
ambiguities
);
}
}
/// A subpixel offset to jitter a perspective camera's frustum by.
///
/// Useful for temporal rendering techniques.
///
/// Do not use with [`OrthographicProjection`].
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
#[derive(Component, Clone, Default)]
pub struct TemporalJitter {
/// Offset is in range [-0.5, 0.5].
pub offset: Vec2,
}
impl TemporalJitter {
pub fn jitter_projection(&self, projection: &mut Mat4, view_size: Vec2) {
if projection.w_axis.w == 1.0 {
warn!(
"TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
);
return;
}
// https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/d7531ae47d8b36a5d4025663e731a47a38be882f/docs/techniques/media/super-resolution-temporal/jitter-space.svg
let jitter = (self.offset * vec2(2.0, -2.0)) / view_size;
projection.z_axis.x += jitter.x;
projection.z_axis.y += jitter.y;
}
}
/// Camera component specifying a mip bias to apply when sampling from material textures.
///
/// Often used in conjunction with antialiasing post-process effects to reduce textures blurriness.
#[derive(Component)]
pub struct MipBias(pub f32);