
# Objective - Contributes to #15460 - Reduce quantity and complexity of feature gates across Bevy ## Solution - Used `target_has_atomic` configuration variable to automatically detect impartial atomic support and automatically switch to `portable-atomic` over the standard library on an as-required basis. ## Testing - CI ## Notes To explain the technique employed here, consider getting `Arc` either from `alloc::sync` _or_ `portable-atomic-util`. First, we can inspect the `alloc` crate to see that you only have access to `Arc` _if_ `target_has_atomic = "ptr"`. We add a target dependency for this particular configuration _inverted_: ```toml [target.'cfg(not(target_has_atomic = "ptr"))'.dependencies] portable-atomic-util = { version = "0.2.4", default-features = false } ``` This ensures we only have the dependency when it is needed, and it is entirely excluded from the dependency graph when it is not. Next, we adjust our configuration flags to instead of checking for `feature = "portable-atomic"` to instead check for `target_has_atomic = "ptr"`: ```rust // `alloc` feature flag hidden for brevity #[cfg(not(target_has_atomic = "ptr"))] use portable_atomic_util as arc; #[cfg(target_has_atomic = "ptr")] use alloc::sync as arc; pub use arc::{Arc, Weak}; ``` The benefits of this technique are three-fold: 1. For platforms without full atomic support, the functionality is enabled automatically. 2. For platforms with atomic support, the dependency is never included, even if a feature was enabled using `--all-features` (for example) 3. The `portable-atomic` feature no longer needs to virally spread to all user-facing crates, it's instead something handled within `bevy_platform_support` (with some extras where other dependencies also need their features enabled).
340 lines
9.6 KiB
Rust
340 lines
9.6 KiB
Rust
use crate::type_info::impl_type_methods;
|
|
use crate::{Reflect, Type, TypePath};
|
|
use alloc::{borrow::Cow, boxed::Box};
|
|
use bevy_platform_support::sync::Arc;
|
|
use core::ops::Deref;
|
|
use derive_more::derive::From;
|
|
|
|
/// The generic parameters of a type.
|
|
///
|
|
/// This is automatically generated via the [`Reflect` derive macro]
|
|
/// and stored on the [`TypeInfo`] returned by [`Typed::type_info`]
|
|
/// for types that have generics.
|
|
///
|
|
/// It supports both type parameters and const parameters
|
|
/// so long as they implement [`TypePath`].
|
|
///
|
|
/// If the type has no generics, this will be empty.
|
|
///
|
|
/// If the type is marked with `#[reflect(type_path = false)]`,
|
|
/// the generics will be empty even if the type has generics.
|
|
///
|
|
/// [`Reflect` derive macro]: bevy_reflect_derive::Reflect
|
|
/// [`TypeInfo`]: crate::type_info::TypeInfo
|
|
/// [`Typed::type_info`]: crate::Typed::type_info
|
|
#[derive(Clone, Default, Debug)]
|
|
pub struct Generics(Box<[GenericInfo]>);
|
|
|
|
impl Generics {
|
|
/// Creates an empty set of generics.
|
|
pub fn new() -> Self {
|
|
Self(Box::new([]))
|
|
}
|
|
|
|
/// Finds the generic parameter with the given name.
|
|
///
|
|
/// Returns `None` if no such parameter exists.
|
|
pub fn get_named(&self, name: &str) -> Option<&GenericInfo> {
|
|
// For small sets of generics (the most common case),
|
|
// a linear search is often faster using a `HashMap`.
|
|
self.0.iter().find(|info| info.name() == name)
|
|
}
|
|
|
|
/// Adds the given generic parameter to the set.
|
|
pub fn with(mut self, info: impl Into<GenericInfo>) -> Self {
|
|
self.0 = IntoIterator::into_iter(self.0)
|
|
.chain(core::iter::once(info.into()))
|
|
.collect();
|
|
self
|
|
}
|
|
}
|
|
|
|
impl<T: Into<GenericInfo>> FromIterator<T> for Generics {
|
|
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
|
|
Self(iter.into_iter().map(Into::into).collect())
|
|
}
|
|
}
|
|
|
|
impl Deref for Generics {
|
|
type Target = [GenericInfo];
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
/// An enum representing a generic parameter.
|
|
#[derive(Clone, Debug, From)]
|
|
pub enum GenericInfo {
|
|
/// A type parameter.
|
|
///
|
|
/// An example would be `T` in `struct Foo<T, U>`.
|
|
Type(TypeParamInfo),
|
|
/// A const parameter.
|
|
///
|
|
/// An example would be `N` in `struct Foo<const N: usize>`.
|
|
Const(ConstParamInfo),
|
|
}
|
|
|
|
impl GenericInfo {
|
|
/// The name of the generic parameter.
|
|
pub fn name(&self) -> &Cow<'static, str> {
|
|
match self {
|
|
Self::Type(info) => info.name(),
|
|
Self::Const(info) => info.name(),
|
|
}
|
|
}
|
|
|
|
/// Whether the generic parameter is a const parameter.
|
|
pub fn is_const(&self) -> bool {
|
|
match self {
|
|
Self::Type(_) => false,
|
|
Self::Const(_) => true,
|
|
}
|
|
}
|
|
|
|
impl_type_methods!(self => {
|
|
match self {
|
|
Self::Type(info) => info.ty(),
|
|
Self::Const(info) => info.ty(),
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Type information for a generic type parameter.
|
|
///
|
|
/// An example of a type parameter would be `T` in `struct Foo<T>`.
|
|
#[derive(Clone, Debug)]
|
|
pub struct TypeParamInfo {
|
|
name: Cow<'static, str>,
|
|
ty: Type,
|
|
default: Option<Type>,
|
|
}
|
|
|
|
impl TypeParamInfo {
|
|
/// Creates a new type parameter with the given name.
|
|
pub fn new<T: TypePath + ?Sized>(name: impl Into<Cow<'static, str>>) -> Self {
|
|
Self {
|
|
name: name.into(),
|
|
ty: Type::of::<T>(),
|
|
default: None,
|
|
}
|
|
}
|
|
|
|
/// Sets the default type for the parameter.
|
|
pub fn with_default<T: TypePath + ?Sized>(mut self) -> Self {
|
|
self.default = Some(Type::of::<T>());
|
|
self
|
|
}
|
|
|
|
/// The name of the type parameter.
|
|
pub fn name(&self) -> &Cow<'static, str> {
|
|
&self.name
|
|
}
|
|
|
|
/// The default type for the parameter, if any.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_reflect::{GenericInfo, Reflect, Typed};
|
|
/// #[derive(Reflect)]
|
|
/// struct Foo<T = f32>(T);
|
|
///
|
|
/// let generics = Foo::<String>::type_info().generics();
|
|
/// let GenericInfo::Type(info) = generics.get_named("T").unwrap() else {
|
|
/// panic!("expected a type parameter");
|
|
/// };
|
|
///
|
|
/// let default = info.default().unwrap();
|
|
///
|
|
/// assert!(default.is::<f32>());
|
|
/// ```
|
|
pub fn default(&self) -> Option<&Type> {
|
|
self.default.as_ref()
|
|
}
|
|
|
|
impl_type_methods!(ty);
|
|
}
|
|
|
|
/// Type information for a const generic parameter.
|
|
///
|
|
/// An example of a const parameter would be `N` in `struct Foo<const N: usize>`.
|
|
#[derive(Clone, Debug)]
|
|
pub struct ConstParamInfo {
|
|
name: Cow<'static, str>,
|
|
ty: Type,
|
|
// Rust currently only allows certain primitive types in const generic position,
|
|
// meaning that `Reflect` is guaranteed to be implemented for the default value.
|
|
default: Option<Arc<dyn Reflect>>,
|
|
}
|
|
|
|
impl ConstParamInfo {
|
|
/// Creates a new const parameter with the given name.
|
|
pub fn new<T: TypePath + ?Sized>(name: impl Into<Cow<'static, str>>) -> Self {
|
|
Self {
|
|
name: name.into(),
|
|
ty: Type::of::<T>(),
|
|
default: None,
|
|
}
|
|
}
|
|
|
|
/// Sets the default value for the parameter.
|
|
pub fn with_default<T: Reflect + 'static>(mut self, default: T) -> Self {
|
|
let arc = Arc::new(default);
|
|
|
|
#[cfg(not(target_has_atomic = "ptr"))]
|
|
#[expect(
|
|
unsafe_code,
|
|
reason = "unsized coercion is an unstable feature for non-std types"
|
|
)]
|
|
// SAFETY:
|
|
// - Coercion from `T` to `dyn Reflect` is valid as `T: Reflect + 'static`
|
|
// - `Arc::from_raw` receives a valid pointer from a previous call to `Arc::into_raw`
|
|
let arc = unsafe { Arc::from_raw(Arc::into_raw(arc) as *const dyn Reflect) };
|
|
|
|
self.default = Some(arc);
|
|
self
|
|
}
|
|
|
|
/// The name of the const parameter.
|
|
pub fn name(&self) -> &Cow<'static, str> {
|
|
&self.name
|
|
}
|
|
|
|
/// The default value for the parameter, if any.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_reflect::{GenericInfo, Reflect, Typed};
|
|
/// #[derive(Reflect)]
|
|
/// struct Foo<const N: usize = 10>([u8; N]);
|
|
///
|
|
/// let generics = Foo::<5>::type_info().generics();
|
|
/// let GenericInfo::Const(info) = generics.get_named("N").unwrap() else {
|
|
/// panic!("expected a const parameter");
|
|
/// };
|
|
///
|
|
/// let default = info.default().unwrap();
|
|
///
|
|
/// assert_eq!(default.downcast_ref::<usize>().unwrap(), &10);
|
|
/// ```
|
|
pub fn default(&self) -> Option<&dyn Reflect> {
|
|
self.default.as_deref()
|
|
}
|
|
|
|
impl_type_methods!(ty);
|
|
}
|
|
|
|
macro_rules! impl_generic_info_methods {
|
|
// Implements both getter and setter methods for the given field.
|
|
($field:ident) => {
|
|
$crate::generics::impl_generic_info_methods!(self => &self.$field);
|
|
|
|
/// Sets the generic parameters for this type.
|
|
pub fn with_generics(mut self, generics: crate::generics::Generics) -> Self {
|
|
self.$field = generics;
|
|
self
|
|
}
|
|
};
|
|
// Implements only a getter method for the given expression.
|
|
($self:ident => $expr:expr) => {
|
|
/// Gets the generic parameters for this type.
|
|
pub fn generics(&$self) -> &crate::generics::Generics {
|
|
$expr
|
|
}
|
|
};
|
|
}
|
|
|
|
pub(crate) use impl_generic_info_methods;
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::{Reflect, Typed};
|
|
use alloc::string::String;
|
|
use core::fmt::Debug;
|
|
|
|
#[test]
|
|
fn should_maintain_order() {
|
|
#[derive(Reflect)]
|
|
struct Test<T, U: Debug, const N: usize>([(T, U); N]);
|
|
|
|
let generics = <Test<f32, String, 10> as Typed>::type_info()
|
|
.as_tuple_struct()
|
|
.unwrap()
|
|
.generics();
|
|
|
|
assert_eq!(generics.len(), 3);
|
|
|
|
let mut iter = generics.iter();
|
|
|
|
let t = iter.next().unwrap();
|
|
assert_eq!(t.name(), "T");
|
|
assert!(t.ty().is::<f32>());
|
|
assert!(!t.is_const());
|
|
|
|
let u = iter.next().unwrap();
|
|
assert_eq!(u.name(), "U");
|
|
assert!(u.ty().is::<String>());
|
|
assert!(!u.is_const());
|
|
|
|
let n = iter.next().unwrap();
|
|
assert_eq!(n.name(), "N");
|
|
assert!(n.ty().is::<usize>());
|
|
assert!(n.is_const());
|
|
|
|
assert!(iter.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn should_get_by_name() {
|
|
#[derive(Reflect)]
|
|
enum Test<T, U: Debug, const N: usize> {
|
|
Array([(T, U); N]),
|
|
}
|
|
|
|
let generics = <Test<f32, String, 10> as Typed>::type_info()
|
|
.as_enum()
|
|
.unwrap()
|
|
.generics();
|
|
|
|
let t = generics.get_named("T").unwrap();
|
|
assert_eq!(t.name(), "T");
|
|
assert!(t.ty().is::<f32>());
|
|
assert!(!t.is_const());
|
|
|
|
let u = generics.get_named("U").unwrap();
|
|
assert_eq!(u.name(), "U");
|
|
assert!(u.ty().is::<String>());
|
|
assert!(!u.is_const());
|
|
|
|
let n = generics.get_named("N").unwrap();
|
|
assert_eq!(n.name(), "N");
|
|
assert!(n.ty().is::<usize>());
|
|
assert!(n.is_const());
|
|
}
|
|
|
|
#[test]
|
|
fn should_store_defaults() {
|
|
#[derive(Reflect)]
|
|
struct Test<T, U: Debug = String, const N: usize = 10>([(T, U); N]);
|
|
|
|
let generics = <Test<f32> as Typed>::type_info()
|
|
.as_tuple_struct()
|
|
.unwrap()
|
|
.generics();
|
|
|
|
let GenericInfo::Type(u) = generics.get_named("U").unwrap() else {
|
|
panic!("expected a type parameter");
|
|
};
|
|
assert_eq!(u.default().unwrap(), &Type::of::<String>());
|
|
|
|
let GenericInfo::Const(n) = generics.get_named("N").unwrap() else {
|
|
panic!("expected a const parameter");
|
|
};
|
|
assert_eq!(n.default().unwrap().downcast_ref::<usize>().unwrap(), &10);
|
|
}
|
|
}
|