bevy/crates/bevy_audio/src/volume.rs
ZoOL a35eed0ea4
fix: Ensure linear volume subtraction does not go below zero (#19423)
fix: [Ensure linear volume subtraction does not go below zero
](https://github.com/bevyengine/bevy/issues/19417)

## Solution
- Clamp the result of linear volume subtraction to a minimum of 0.0
- Add a new test case to verify behavior when subtracting beyond zero

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Jan Hohenheim <jan@hohenheim.ch>
2025-06-05 03:59:20 +00:00

566 lines
18 KiB
Rust

use bevy_ecs::prelude::*;
use bevy_math::ops;
use bevy_reflect::prelude::*;
/// Use this [`Resource`] to control the global volume of all audio.
///
/// Note: Changing [`GlobalVolume`] does not affect already playing audio.
#[derive(Resource, Debug, Default, Clone, Copy, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct GlobalVolume {
/// The global volume of all audio.
pub volume: Volume,
}
impl From<Volume> for GlobalVolume {
fn from(volume: Volume) -> Self {
Self { volume }
}
}
impl GlobalVolume {
/// Create a new [`GlobalVolume`] with the given volume.
pub fn new(volume: Volume) -> Self {
Self { volume }
}
}
/// A [`Volume`] represents an audio source's volume level.
///
/// To create a new [`Volume`] from a linear scale value, use
/// [`Volume::Linear`].
///
/// To create a new [`Volume`] from decibels, use [`Volume::Decibels`].
#[derive(Clone, Copy, Debug, Reflect)]
#[reflect(Clone, Debug, PartialEq)]
pub enum Volume {
/// Create a new [`Volume`] from the given volume in the linear scale.
///
/// In a linear scale, the value `1.0` represents the "normal" volume,
/// meaning the audio is played at its original level. Values greater than
/// `1.0` increase the volume, while values between `0.0` and `1.0` decrease
/// the volume. A value of `0.0` effectively mutes the audio.
///
/// # Examples
///
/// ```
/// # use bevy_audio::Volume;
/// # use bevy_math::ops;
/// #
/// # const EPSILON: f32 = 0.01;
///
/// let volume = Volume::Linear(0.5);
/// assert_eq!(volume.to_linear(), 0.5);
/// assert!(ops::abs(volume.to_decibels() - -6.0206) < EPSILON);
///
/// let volume = Volume::Linear(0.0);
/// assert_eq!(volume.to_linear(), 0.0);
/// assert_eq!(volume.to_decibels(), f32::NEG_INFINITY);
///
/// let volume = Volume::Linear(1.0);
/// assert_eq!(volume.to_linear(), 1.0);
/// assert!(ops::abs(volume.to_decibels() - 0.0) < EPSILON);
/// ```
Linear(f32),
/// Create a new [`Volume`] from the given volume in decibels.
///
/// In a decibel scale, the value `0.0` represents the "normal" volume,
/// meaning the audio is played at its original level. Values greater than
/// `0.0` increase the volume, while values less than `0.0` decrease the
/// volume. A value of [`f32::NEG_INFINITY`] decibels effectively mutes the
/// audio.
///
/// # Examples
///
/// ```
/// # use bevy_audio::Volume;
/// # use bevy_math::ops;
/// #
/// # const EPSILON: f32 = 0.01;
///
/// let volume = Volume::Decibels(-5.998);
/// assert!(ops::abs(volume.to_linear() - 0.5) < EPSILON);
///
/// let volume = Volume::Decibels(f32::NEG_INFINITY);
/// assert_eq!(volume.to_linear(), 0.0);
///
/// let volume = Volume::Decibels(0.0);
/// assert_eq!(volume.to_linear(), 1.0);
///
/// let volume = Volume::Decibels(20.0);
/// assert_eq!(volume.to_linear(), 10.0);
/// ```
Decibels(f32),
}
impl Default for Volume {
fn default() -> Self {
Self::Linear(1.0)
}
}
impl PartialEq for Volume {
fn eq(&self, other: &Self) -> bool {
use Volume::{Decibels, Linear};
match (self, other) {
(Linear(a), Linear(b)) => a.abs() == b.abs(),
(Decibels(a), Decibels(b)) => a == b,
(a, b) => a.to_decibels() == b.to_decibels(),
}
}
}
impl PartialOrd for Volume {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
use Volume::{Decibels, Linear};
Some(match (self, other) {
(Linear(a), Linear(b)) => a.abs().total_cmp(&b.abs()),
(Decibels(a), Decibels(b)) => a.total_cmp(b),
(a, b) => a.to_decibels().total_cmp(&b.to_decibels()),
})
}
}
#[inline]
fn decibels_to_linear(decibels: f32) -> f32 {
ops::powf(10.0f32, decibels / 20.0)
}
#[inline]
fn linear_to_decibels(linear: f32) -> f32 {
20.0 * ops::log10(linear.abs())
}
impl Volume {
/// Returns the volume in linear scale as a float.
pub fn to_linear(&self) -> f32 {
match self {
Self::Linear(v) => v.abs(),
Self::Decibels(v) => decibels_to_linear(*v),
}
}
/// Returns the volume in decibels as a float.
///
/// If the volume is silent / off / muted, i.e., its underlying linear scale
/// is `0.0`, this method returns negative infinity.
pub fn to_decibels(&self) -> f32 {
match self {
Self::Linear(v) => linear_to_decibels(*v),
Self::Decibels(v) => *v,
}
}
/// The silent volume. Also known as "off" or "muted".
pub const SILENT: Self = Volume::Linear(0.0);
/// Increases the volume by the specified percentage.
///
/// This method works in the linear domain, where a 100% increase
/// means doubling the volume (equivalent to +6.02dB).
///
/// # Arguments
/// * `percentage` - The percentage to increase (50.0 means 50% increase)
///
/// # Examples
/// ```
/// use bevy_audio::Volume;
///
/// let volume = Volume::Linear(1.0);
/// let increased = volume.increase_by_percentage(100.0);
/// assert_eq!(increased.to_linear(), 2.0);
/// ```
pub fn increase_by_percentage(&self, percentage: f32) -> Self {
let factor = 1.0 + (percentage / 100.0);
Volume::Linear(self.to_linear() * factor)
}
/// Decreases the volume by the specified percentage.
///
/// This method works in the linear domain, where a 50% decrease
/// means halving the volume (equivalent to -6.02dB).
///
/// # Arguments
/// * `percentage` - The percentage to decrease (50.0 means 50% decrease)
///
/// # Examples
/// ```
/// use bevy_audio::Volume;
///
/// let volume = Volume::Linear(1.0);
/// let decreased = volume.decrease_by_percentage(50.0);
/// assert_eq!(decreased.to_linear(), 0.5);
/// ```
pub fn decrease_by_percentage(&self, percentage: f32) -> Self {
let factor = 1.0 - (percentage / 100.0).clamp(0.0, 1.0);
Volume::Linear(self.to_linear() * factor)
}
/// Scales the volume to a specific linear factor relative to the current volume.
///
/// This is different from `adjust_by_linear` as it sets the volume to be
/// exactly the factor times the original volume, rather than applying
/// the factor to the current volume.
///
/// # Arguments
/// * `factor` - The scaling factor (2.0 = twice as loud, 0.5 = half as loud)
///
/// # Examples
/// ```
/// use bevy_audio::Volume;
///
/// let volume = Volume::Linear(0.8);
/// let scaled = volume.scale_to_factor(1.25);
/// assert_eq!(scaled.to_linear(), 1.0);
/// ```
pub fn scale_to_factor(&self, factor: f32) -> Self {
Volume::Linear(self.to_linear() * factor)
}
/// Creates a fade effect by interpolating between current volume and target volume.
///
/// This method performs linear interpolation in the linear domain, which
/// provides a more natural-sounding fade effect.
///
/// # Arguments
/// * `target` - The target volume to fade towards
/// * `factor` - The interpolation factor (0.0 = current volume, 1.0 = target volume)
///
/// # Examples
/// ```
/// use bevy_audio::Volume;
///
/// let current = Volume::Linear(1.0);
/// let target = Volume::Linear(0.0);
/// let faded = current.fade_towards(target, 0.5);
/// assert_eq!(faded.to_linear(), 0.5);
/// ```
pub fn fade_towards(&self, target: Volume, factor: f32) -> Self {
let current_linear = self.to_linear();
let target_linear = target.to_linear();
let factor_clamped = factor.clamp(0.0, 1.0);
let interpolated = current_linear + (target_linear - current_linear) * factor_clamped;
Volume::Linear(interpolated)
}
}
impl core::ops::Mul<Self> for Volume {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
use Volume::{Decibels, Linear};
match (self, rhs) {
(Linear(a), Linear(b)) => Linear(a * b),
(Decibels(a), Decibels(b)) => Decibels(a + b),
// {Linear, Decibels} favors the left hand side of the operation by
// first converting the right hand side to the same type as the left
// hand side and then performing the operation.
(Linear(..), Decibels(db)) => self * Linear(decibels_to_linear(db)),
(Decibels(..), Linear(l)) => self * Decibels(linear_to_decibels(l)),
}
}
}
impl core::ops::MulAssign<Self> for Volume {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl core::ops::Div<Self> for Volume {
type Output = Self;
fn div(self, rhs: Self) -> Self {
use Volume::{Decibels, Linear};
match (self, rhs) {
(Linear(a), Linear(b)) => Linear(a / b),
(Decibels(a), Decibels(b)) => Decibels(a - b),
// {Linear, Decibels} favors the left hand side of the operation by
// first converting the right hand side to the same type as the left
// hand side and then performing the operation.
(Linear(..), Decibels(db)) => self / Linear(decibels_to_linear(db)),
(Decibels(..), Linear(l)) => self / Decibels(linear_to_decibels(l)),
}
}
}
impl core::ops::DivAssign<Self> for Volume {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
use super::Volume::{self, Decibels, Linear};
/// Based on [Wikipedia's Decibel article].
///
/// [Wikipedia's Decibel article]: https://web.archive.org/web/20230810185300/https://en.wikipedia.org/wiki/Decibel
const DECIBELS_LINEAR_TABLE: [(f32, f32); 27] = [
(100., 100000.),
(90., 31623.),
(80., 10000.),
(70., 3162.),
(60., 1000.),
(50., 316.2),
(40., 100.),
(30., 31.62),
(20., 10.),
(10., 3.162),
(5.998, 1.995),
(3.003, 1.413),
(1.002, 1.122),
(0., 1.),
(-1.002, 0.891),
(-3.003, 0.708),
(-5.998, 0.501),
(-10., 0.3162),
(-20., 0.1),
(-30., 0.03162),
(-40., 0.01),
(-50., 0.003162),
(-60., 0.001),
(-70., 0.0003162),
(-80., 0.0001),
(-90., 0.00003162),
(-100., 0.00001),
];
#[test]
fn volume_conversion() {
for (db, linear) in DECIBELS_LINEAR_TABLE {
for volume in [Linear(linear), Decibels(db), Linear(-linear)] {
let db_test = volume.to_decibels();
let linear_test = volume.to_linear();
let db_delta = db_test - db;
let linear_relative_delta = (linear_test - linear) / linear;
assert!(
db_delta.abs() < 1e-2,
"Expected ~{}dB, got {}dB (delta {})",
db,
db_test,
db_delta
);
assert!(
linear_relative_delta.abs() < 1e-3,
"Expected ~{}, got {} (relative delta {})",
linear,
linear_test,
linear_relative_delta
);
}
}
}
#[test]
fn volume_conversion_special() {
assert!(
Decibels(f32::INFINITY).to_linear().is_infinite(),
"Infinite decibels is equivalent to infinite linear scale"
);
assert!(
Linear(f32::INFINITY).to_decibels().is_infinite(),
"Infinite linear scale is equivalent to infinite decibels"
);
assert!(
Linear(f32::NEG_INFINITY).to_decibels().is_infinite(),
"Negative infinite linear scale is equivalent to infinite decibels"
);
assert_eq!(
Decibels(f32::NEG_INFINITY).to_linear().abs(),
0.0,
"Negative infinity decibels is equivalent to zero linear scale"
);
assert!(
Linear(0.0).to_decibels().is_infinite(),
"Zero linear scale is equivalent to negative infinity decibels"
);
assert!(
Linear(-0.0).to_decibels().is_infinite(),
"Negative zero linear scale is equivalent to negative infinity decibels"
);
assert!(
Decibels(f32::NAN).to_linear().is_nan(),
"NaN decibels is equivalent to NaN linear scale"
);
assert!(
Linear(f32::NAN).to_decibels().is_nan(),
"NaN linear scale is equivalent to NaN decibels"
);
}
#[test]
fn test_increase_by_percentage() {
let volume = Linear(1.0);
// 100% increase should double the volume
let increased = volume.increase_by_percentage(100.0);
assert_eq!(increased.to_linear(), 2.0);
// 50% increase
let increased = volume.increase_by_percentage(50.0);
assert_eq!(increased.to_linear(), 1.5);
}
#[test]
fn test_decrease_by_percentage() {
let volume = Linear(1.0);
// 50% decrease should halve the volume
let decreased = volume.decrease_by_percentage(50.0);
assert_eq!(decreased.to_linear(), 0.5);
// 25% decrease
let decreased = volume.decrease_by_percentage(25.0);
assert_eq!(decreased.to_linear(), 0.75);
// 100% decrease should result in silence
let decreased = volume.decrease_by_percentage(100.0);
assert_eq!(decreased.to_linear(), 0.0);
}
#[test]
fn test_scale_to_factor() {
let volume = Linear(0.8);
let scaled = volume.scale_to_factor(1.25);
assert_eq!(scaled.to_linear(), 1.0);
}
#[test]
fn test_fade_towards() {
let current = Linear(1.0);
let target = Linear(0.0);
// 50% fade should result in 0.5 linear volume
let faded = current.fade_towards(target, 0.5);
assert_eq!(faded.to_linear(), 0.5);
// 0% fade should keep current volume
let faded = current.fade_towards(target, 0.0);
assert_eq!(faded.to_linear(), 1.0);
// 100% fade should reach target volume
let faded = current.fade_towards(target, 1.0);
assert_eq!(faded.to_linear(), 0.0);
}
#[test]
fn test_decibel_math_properties() {
let volume = Linear(1.0);
// Adding 20dB should multiply linear volume by 10
let adjusted = volume * Decibels(20.0);
assert_approx_eq(adjusted, Linear(10.0));
// Subtracting 20dB should divide linear volume by 10
let adjusted = volume / Decibels(20.0);
assert_approx_eq(adjusted, Linear(0.1));
}
fn assert_approx_eq(a: Volume, b: Volume) {
const EPSILON: f32 = 0.0001;
match (a, b) {
(Decibels(a), Decibels(b)) | (Linear(a), Linear(b)) => assert!(
(a - b).abs() < EPSILON,
"Expected {:?} to be approximately equal to {:?}",
a,
b
),
(a, b) => assert!(
(a.to_decibels() - b.to_decibels()).abs() < EPSILON,
"Expected {:?} to be approximately equal to {:?}",
a,
b
),
}
}
#[test]
fn volume_ops_mul() {
// Linear to Linear.
assert_approx_eq(Linear(0.5) * Linear(0.5), Linear(0.25));
assert_approx_eq(Linear(0.5) * Linear(0.1), Linear(0.05));
assert_approx_eq(Linear(0.5) * Linear(-0.5), Linear(-0.25));
// Decibels to Decibels.
assert_approx_eq(Decibels(0.0) * Decibels(0.0), Decibels(0.0));
assert_approx_eq(Decibels(6.0) * Decibels(6.0), Decibels(12.0));
assert_approx_eq(Decibels(-6.0) * Decibels(-6.0), Decibels(-12.0));
// {Linear, Decibels} favors the left hand side of the operation.
assert_approx_eq(Linear(0.5) * Decibels(0.0), Linear(0.5));
assert_approx_eq(Decibels(0.0) * Linear(0.501), Decibels(-6.003246));
}
#[test]
fn volume_ops_mul_assign() {
// Linear to Linear.
let mut volume = Linear(0.5);
volume *= Linear(0.5);
assert_approx_eq(volume, Linear(0.25));
// Decibels to Decibels.
let mut volume = Decibels(6.0);
volume *= Decibels(6.0);
assert_approx_eq(volume, Decibels(12.0));
// {Linear, Decibels} favors the left hand side of the operation.
let mut volume = Linear(0.5);
volume *= Decibels(0.0);
assert_approx_eq(volume, Linear(0.5));
let mut volume = Decibels(0.0);
volume *= Linear(0.501);
assert_approx_eq(volume, Decibels(-6.003246));
}
#[test]
fn volume_ops_div() {
// Linear to Linear.
assert_approx_eq(Linear(0.5) / Linear(0.5), Linear(1.0));
assert_approx_eq(Linear(0.5) / Linear(0.1), Linear(5.0));
assert_approx_eq(Linear(0.5) / Linear(-0.5), Linear(-1.0));
// Decibels to Decibels.
assert_approx_eq(Decibels(0.0) / Decibels(0.0), Decibels(0.0));
assert_approx_eq(Decibels(6.0) / Decibels(6.0), Decibels(0.0));
assert_approx_eq(Decibels(-6.0) / Decibels(-6.0), Decibels(0.0));
// {Linear, Decibels} favors the left hand side of the operation.
assert_approx_eq(Linear(0.5) / Decibels(0.0), Linear(0.5));
assert_approx_eq(Decibels(0.0) / Linear(0.501), Decibels(6.003246));
}
#[test]
fn volume_ops_div_assign() {
// Linear to Linear.
let mut volume = Linear(0.5);
volume /= Linear(0.5);
assert_approx_eq(volume, Linear(1.0));
// Decibels to Decibels.
let mut volume = Decibels(6.0);
volume /= Decibels(6.0);
assert_approx_eq(volume, Decibels(0.0));
// {Linear, Decibels} favors the left hand side of the operation.
let mut volume = Linear(0.5);
volume /= Decibels(0.0);
assert_approx_eq(volume, Linear(0.5));
let mut volume = Decibels(0.0);
volume /= Linear(0.501);
assert_approx_eq(volume, Decibels(6.003246));
}
}