# Objective - Make the reusable PBR shading functionality a little more reusable - Add constructor functions for `StandardMaterial` and `PbrInput` structs to populate them with default values - Document unclear `PbrInput` members - Demonstrate how to reuse the bevy PBR shading functionality - The final important piece from #3969 as the initial shot at making the PBR shader code reusable in custom materials ## Solution - Add back and rework the 'old' `array_texture` example from pre-0.6. - Create a custom shader material - Use a single array texture binding and sampler for the material bind group - Use a shader that calls `pbr()` from the `bevy_pbr::pbr_functions` import - Spawn a row of cubes using the custom material - In the shader, select the array texture layer to sample by using the world position x coordinate modulo the number of array texture layers <img width="1392" alt="Screenshot 2022-06-23 at 12 28 05" src="https://user-images.githubusercontent.com/302146/175278593-2296f519-f577-4ece-81c0-d842283784a1.png"> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
		
			
				
	
	
		
			64 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			WebGPU Shading Language
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			WebGPU Shading Language
		
	
	
	
	
	
#import bevy_pbr::mesh_view_bindings
 | 
						|
#import bevy_pbr::mesh_bindings
 | 
						|
 | 
						|
#import bevy_pbr::pbr_types
 | 
						|
#import bevy_pbr::utils
 | 
						|
#import bevy_pbr::clustered_forward
 | 
						|
#import bevy_pbr::lighting
 | 
						|
#import bevy_pbr::shadows
 | 
						|
#import bevy_pbr::pbr_functions
 | 
						|
 | 
						|
[[group(1), binding(0)]]
 | 
						|
var my_array_texture: texture_2d_array<f32>;
 | 
						|
[[group(1), binding(1)]]
 | 
						|
var my_array_texture_sampler: sampler;
 | 
						|
 | 
						|
struct FragmentInput {
 | 
						|
    [[builtin(front_facing)]] is_front: bool;
 | 
						|
    [[builtin(position)]] frag_coord: vec4<f32>;
 | 
						|
    [[location(0)]] world_position: vec4<f32>;
 | 
						|
    [[location(1)]] world_normal: vec3<f32>;
 | 
						|
    [[location(2)]] uv: vec2<f32>;
 | 
						|
#ifdef VERTEX_TANGENTS
 | 
						|
    [[location(3)]] world_tangent: vec4<f32>;
 | 
						|
#endif
 | 
						|
#ifdef VERTEX_COLORS
 | 
						|
    [[location(4)]] color: vec4<f32>;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
[[stage(fragment)]]
 | 
						|
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
 | 
						|
    let layer = i32(in.world_position.x) & 0x3;
 | 
						|
 | 
						|
    // Prepare a 'processed' StandardMaterial by sampling all textures to resolve
 | 
						|
    // the material members
 | 
						|
    var pbr_input: PbrInput = pbr_input_new();
 | 
						|
 | 
						|
    pbr_input.material.base_color = textureSample(my_array_texture, my_array_texture_sampler, in.uv, layer);
 | 
						|
#ifdef VERTEX_COLORS
 | 
						|
    pbr_input.material.base_color = pbr_input.material.base_color * in.color;
 | 
						|
#endif
 | 
						|
 | 
						|
    pbr_input.frag_coord = in.frag_coord;
 | 
						|
    pbr_input.world_position = in.world_position;
 | 
						|
    pbr_input.world_normal = in.world_normal;
 | 
						|
 | 
						|
    pbr_input.is_orthographic = view.projection[3].w == 1.0;
 | 
						|
 | 
						|
    pbr_input.N = prepare_normal(
 | 
						|
        pbr_input.material.flags,
 | 
						|
        in.world_normal,
 | 
						|
#ifdef VERTEX_TANGENTS
 | 
						|
#ifdef STANDARDMATERIAL_NORMAL_MAP
 | 
						|
        in.world_tangent,
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
        in.uv,
 | 
						|
        in.is_front,
 | 
						|
    );
 | 
						|
    pbr_input.V = calculate_view(in.world_position, pbr_input.is_orthographic);
 | 
						|
 | 
						|
    return pbr(pbr_input);
 | 
						|
}
 |