bevy/crates/bevy_ui/src/render/box_shadow.rs
atlv bab4c55357
Expose Pipeline Compilation Zero Initialize Workgroup Memory Option (#16301)
# Objective

- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.

## Solution

- expose the compilation option wgpu gives us

## Testing

- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems

---

</details>

## Migration Guide

- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
2024-11-11 22:14:07 +01:00

575 lines
20 KiB
Rust

use core::{hash::Hash, ops::Range};
use crate::{
BoxShadow, CalculatedClip, ComputedNode, DefaultUiCamera, RenderUiSystem, ResolvedBorderRadius,
TargetCamera, TransparentUi, UiBoxShadowSamples, UiScale, Val,
};
use bevy_app::prelude::*;
use bevy_asset::*;
use bevy_color::{Alpha, ColorToComponents, LinearRgba};
use bevy_ecs::prelude::*;
use bevy_ecs::{
prelude::Component,
storage::SparseSet,
system::{
lifetimeless::{Read, SRes},
*,
},
};
use bevy_math::{vec2, FloatOrd, Mat4, Rect, Vec2, Vec3Swizzles, Vec4Swizzles};
use bevy_render::sync_world::MainEntity;
use bevy_render::RenderApp;
use bevy_render::{
camera::Camera,
render_phase::*,
render_resource::{binding_types::uniform_buffer, *},
renderer::{RenderDevice, RenderQueue},
sync_world::{RenderEntity, TemporaryRenderEntity},
texture::BevyDefault,
view::*,
Extract, ExtractSchedule, Render, RenderSet,
};
use bevy_transform::prelude::GlobalTransform;
use bytemuck::{Pod, Zeroable};
use super::{QUAD_INDICES, QUAD_VERTEX_POSITIONS};
pub const BOX_SHADOW_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(17717747047134343426);
/// A plugin that enables the rendering of box shadows.
pub struct BoxShadowPlugin;
impl Plugin for BoxShadowPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(
app,
BOX_SHADOW_SHADER_HANDLE,
"box_shadow.wgsl",
Shader::from_wgsl
);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<TransparentUi, DrawBoxShadows>()
.init_resource::<ExtractedBoxShadows>()
.init_resource::<BoxShadowMeta>()
.init_resource::<SpecializedRenderPipelines<BoxShadowPipeline>>()
.add_systems(
ExtractSchedule,
extract_shadows.in_set(RenderUiSystem::ExtractBoxShadows),
)
.add_systems(
Render,
(
queue_shadows.in_set(RenderSet::Queue),
prepare_shadows.in_set(RenderSet::PrepareBindGroups),
),
);
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<BoxShadowPipeline>();
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct BoxShadowVertex {
position: [f32; 3],
uvs: [f32; 2],
vertex_color: [f32; 4],
size: [f32; 2],
radius: [f32; 4],
blur: f32,
bounds: [f32; 2],
}
#[derive(Component)]
pub struct UiShadowsBatch {
pub range: Range<u32>,
pub camera: Entity,
}
/// Contains the vertices and bind groups to be sent to the GPU
#[derive(Resource)]
pub struct BoxShadowMeta {
vertices: RawBufferVec<BoxShadowVertex>,
indices: RawBufferVec<u32>,
view_bind_group: Option<BindGroup>,
}
impl Default for BoxShadowMeta {
fn default() -> Self {
Self {
vertices: RawBufferVec::new(BufferUsages::VERTEX),
indices: RawBufferVec::new(BufferUsages::INDEX),
view_bind_group: None,
}
}
}
#[derive(Resource)]
pub struct BoxShadowPipeline {
pub view_layout: BindGroupLayout,
}
impl FromWorld for BoxShadowPipeline {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
let view_layout = render_device.create_bind_group_layout(
"box_shadow_view_layout",
&BindGroupLayoutEntries::single(
ShaderStages::VERTEX_FRAGMENT,
uniform_buffer::<ViewUniform>(true),
),
);
BoxShadowPipeline { view_layout }
}
}
#[derive(Clone, Copy, Hash, PartialEq, Eq)]
pub struct UiTextureSlicePipelineKey {
pub hdr: bool,
/// Number of samples, a higher value results in better quality shadows.
pub samples: u32,
}
impl SpecializedRenderPipeline for BoxShadowPipeline {
type Key = UiTextureSlicePipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
let vertex_layout = VertexBufferLayout::from_vertex_formats(
VertexStepMode::Vertex,
vec![
// position
VertexFormat::Float32x3,
// uv
VertexFormat::Float32x2,
// color
VertexFormat::Float32x4,
// target rect size
VertexFormat::Float32x2,
// corner radius values (top left, top right, bottom right, bottom left)
VertexFormat::Float32x4,
// blur radius
VertexFormat::Float32,
// outer size
VertexFormat::Float32x2,
],
);
let shader_defs = vec![ShaderDefVal::UInt(
"SHADOW_SAMPLES".to_string(),
key.samples,
)];
RenderPipelineDescriptor {
vertex: VertexState {
shader: BOX_SHADOW_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_layout],
},
fragment: Some(FragmentState {
shader: BOX_SHADOW_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format: if key.hdr {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
},
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
layout: vec![self.view_layout.clone()],
push_constant_ranges: Vec::new(),
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: PrimitiveTopology::TriangleList,
strip_index_format: None,
},
depth_stencil: None,
multisample: MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("box_shadow_pipeline".into()),
zero_initialize_workgroup_memory: false,
}
}
}
/// Description of a shadow to be sorted and queued for rendering
pub struct ExtractedBoxShadow {
pub stack_index: u32,
pub transform: Mat4,
pub rect: Rect,
pub clip: Option<Rect>,
pub camera_entity: Entity,
pub color: LinearRgba,
pub radius: ResolvedBorderRadius,
pub blur_radius: f32,
pub size: Vec2,
pub main_entity: MainEntity,
}
/// List of extracted shadows to be sorted and queued for rendering
#[derive(Resource, Default)]
pub struct ExtractedBoxShadows {
pub box_shadows: SparseSet<Entity, ExtractedBoxShadow>,
}
pub fn extract_shadows(
mut commands: Commands,
mut extracted_box_shadows: ResMut<ExtractedBoxShadows>,
default_ui_camera: Extract<DefaultUiCamera>,
ui_scale: Extract<Res<UiScale>>,
camera_query: Extract<Query<(Entity, &Camera)>>,
box_shadow_query: Extract<
Query<(
Entity,
&ComputedNode,
&GlobalTransform,
&ViewVisibility,
&BoxShadow,
Option<&CalculatedClip>,
Option<&TargetCamera>,
)>,
>,
mapping: Extract<Query<RenderEntity>>,
) {
for (entity, uinode, transform, view_visibility, box_shadow, clip, camera) in &box_shadow_query
{
let Some(camera_entity) = camera.map(TargetCamera::entity).or(default_ui_camera.get())
else {
continue;
};
let Ok(camera_entity) = mapping.get(camera_entity) else {
continue;
};
// Skip invisible images
if !view_visibility.get() || box_shadow.color.is_fully_transparent() || uinode.is_empty() {
continue;
}
let ui_logical_viewport_size = camera_query
.get(camera_entity)
.ok()
.and_then(|(_, c)| c.logical_viewport_size())
.unwrap_or(Vec2::ZERO)
// The logical window resolution returned by `Window` only takes into account the window scale factor and not `UiScale`,
// so we have to divide by `UiScale` to get the size of the UI viewport.
/ ui_scale.0;
let resolve_val = |val, base| match val {
Val::Auto => 0.,
Val::Px(px) => px,
Val::Percent(percent) => percent / 100. * base,
Val::Vw(percent) => percent / 100. * ui_logical_viewport_size.x,
Val::Vh(percent) => percent / 100. * ui_logical_viewport_size.y,
Val::VMin(percent) => percent / 100. * ui_logical_viewport_size.min_element(),
Val::VMax(percent) => percent / 100. * ui_logical_viewport_size.max_element(),
};
let spread_x = resolve_val(box_shadow.spread_radius, uinode.size().x);
let spread_ratio_x = (spread_x + uinode.size().x) / uinode.size().x;
let spread = vec2(
spread_x,
(spread_ratio_x * uinode.size().y) - uinode.size().y,
);
let blur_radius = resolve_val(box_shadow.blur_radius, uinode.size().x);
let offset = vec2(
resolve_val(box_shadow.x_offset, uinode.size().x),
resolve_val(box_shadow.y_offset, uinode.size().y),
);
let shadow_size = uinode.size() + spread;
if shadow_size.cmple(Vec2::ZERO).any() {
continue;
}
let radius = ResolvedBorderRadius {
top_left: uinode.border_radius.top_left * spread_ratio_x,
top_right: uinode.border_radius.top_right * spread_ratio_x,
bottom_left: uinode.border_radius.bottom_left * spread_ratio_x,
bottom_right: uinode.border_radius.bottom_right * spread_ratio_x,
};
extracted_box_shadows.box_shadows.insert(
commands.spawn(TemporaryRenderEntity).id(),
ExtractedBoxShadow {
stack_index: uinode.stack_index,
transform: transform.compute_matrix() * Mat4::from_translation(offset.extend(0.)),
color: box_shadow.color.into(),
rect: Rect {
min: Vec2::ZERO,
max: shadow_size + 6. * blur_radius,
},
clip: clip.map(|clip| clip.clip),
camera_entity,
radius,
blur_radius,
size: shadow_size,
main_entity: entity.into(),
},
);
}
}
pub fn queue_shadows(
extracted_ui_slicers: ResMut<ExtractedBoxShadows>,
ui_slicer_pipeline: Res<BoxShadowPipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<BoxShadowPipeline>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut views: Query<(Entity, &ExtractedView, Option<&UiBoxShadowSamples>)>,
pipeline_cache: Res<PipelineCache>,
draw_functions: Res<DrawFunctions<TransparentUi>>,
) {
let draw_function = draw_functions.read().id::<DrawBoxShadows>();
for (entity, extracted_shadow) in extracted_ui_slicers.box_shadows.iter() {
let Ok((view_entity, view, shadow_samples)) = views.get_mut(extracted_shadow.camera_entity)
else {
continue;
};
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let pipeline = pipelines.specialize(
&pipeline_cache,
&ui_slicer_pipeline,
UiTextureSlicePipelineKey {
hdr: view.hdr,
samples: shadow_samples.copied().unwrap_or_default().0,
},
);
transparent_phase.add(TransparentUi {
draw_function,
pipeline,
entity: (*entity, extracted_shadow.main_entity),
sort_key: (
FloatOrd(extracted_shadow.stack_index as f32 - 0.1),
entity.index(),
),
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_shadows(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut ui_meta: ResMut<BoxShadowMeta>,
mut extracted_shadows: ResMut<ExtractedBoxShadows>,
view_uniforms: Res<ViewUniforms>,
texture_slicer_pipeline: Res<BoxShadowPipeline>,
mut phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut previous_len: Local<usize>,
) {
if let Some(view_binding) = view_uniforms.uniforms.binding() {
let mut batches: Vec<(Entity, UiShadowsBatch)> = Vec::with_capacity(*previous_len);
ui_meta.vertices.clear();
ui_meta.indices.clear();
ui_meta.view_bind_group = Some(render_device.create_bind_group(
"ui_texture_slice_view_bind_group",
&texture_slicer_pipeline.view_layout,
&BindGroupEntries::single(view_binding),
));
// Buffer indexes
let mut vertices_index = 0;
let mut indices_index = 0;
for ui_phase in phases.values_mut() {
let mut item_index = 0;
while item_index < ui_phase.items.len() {
let item = &mut ui_phase.items[item_index];
if let Some(box_shadow) = extracted_shadows.box_shadows.get(item.entity()) {
let uinode_rect = box_shadow.rect;
let rect_size = uinode_rect.size().extend(1.0);
// Specify the corners of the node
let positions = QUAD_VERTEX_POSITIONS
.map(|pos| (box_shadow.transform * (pos * rect_size).extend(1.)).xyz());
// Calculate the effect of clipping
// Note: this won't work with rotation/scaling, but that's much more complex (may need more that 2 quads)
let positions_diff = if let Some(clip) = box_shadow.clip {
[
Vec2::new(
f32::max(clip.min.x - positions[0].x, 0.),
f32::max(clip.min.y - positions[0].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[1].x, 0.),
f32::max(clip.min.y - positions[1].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[2].x, 0.),
f32::min(clip.max.y - positions[2].y, 0.),
),
Vec2::new(
f32::max(clip.min.x - positions[3].x, 0.),
f32::min(clip.max.y - positions[3].y, 0.),
),
]
} else {
[Vec2::ZERO; 4]
};
let positions_clipped = [
positions[0] + positions_diff[0].extend(0.),
positions[1] + positions_diff[1].extend(0.),
positions[2] + positions_diff[2].extend(0.),
positions[3] + positions_diff[3].extend(0.),
];
let transformed_rect_size = box_shadow.transform.transform_vector3(rect_size);
// Don't try to cull nodes that have a rotation
// In a rotation around the Z-axis, this value is 0.0 for an angle of 0.0 or π
// In those two cases, the culling check can proceed normally as corners will be on
// horizontal / vertical lines
// For all other angles, bypass the culling check
// This does not properly handles all rotations on all axis
if box_shadow.transform.x_axis[1] == 0.0 {
// Cull nodes that are completely clipped
if positions_diff[0].x - positions_diff[1].x >= transformed_rect_size.x
|| positions_diff[1].y - positions_diff[2].y >= transformed_rect_size.y
{
continue;
}
}
let radius = [
box_shadow.radius.top_left,
box_shadow.radius.top_right,
box_shadow.radius.bottom_right,
box_shadow.radius.bottom_left,
];
let uvs = [Vec2::ZERO, Vec2::X, Vec2::ONE, Vec2::Y];
for i in 0..4 {
ui_meta.vertices.push(BoxShadowVertex {
position: positions_clipped[i].into(),
uvs: uvs[i].into(),
vertex_color: box_shadow.color.to_f32_array(),
size: box_shadow.size.into(),
radius,
blur: box_shadow.blur_radius,
bounds: rect_size.xy().into(),
});
}
for &i in &QUAD_INDICES {
ui_meta.indices.push(indices_index + i as u32);
}
batches.push((
item.entity(),
UiShadowsBatch {
range: vertices_index..vertices_index + 6,
camera: box_shadow.camera_entity,
},
));
vertices_index += 6;
indices_index += 4;
// shadows are sent to the gpu non-batched
*ui_phase.items[item_index].batch_range_mut() =
item_index as u32..item_index as u32 + 1;
}
item_index += 1;
}
}
ui_meta.vertices.write_buffer(&render_device, &render_queue);
ui_meta.indices.write_buffer(&render_device, &render_queue);
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
extracted_shadows.box_shadows.clear();
}
pub type DrawBoxShadows = (SetItemPipeline, SetBoxShadowViewBindGroup<0>, DrawBoxShadow);
pub struct SetBoxShadowViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetBoxShadowViewBindGroup<I> {
type Param = SRes<BoxShadowMeta>;
type ViewQuery = Read<ViewUniformOffset>;
type ItemQuery = ();
fn render<'w>(
_item: &P,
view_uniform: &'w ViewUniformOffset,
_entity: Option<()>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(view_bind_group) = ui_meta.into_inner().view_bind_group.as_ref() else {
return RenderCommandResult::Failure("view_bind_group not available");
};
pass.set_bind_group(I, view_bind_group, &[view_uniform.offset]);
RenderCommandResult::Success
}
}
pub struct DrawBoxShadow;
impl<P: PhaseItem> RenderCommand<P> for DrawBoxShadow {
type Param = SRes<BoxShadowMeta>;
type ViewQuery = ();
type ItemQuery = Read<UiShadowsBatch>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
batch: Option<&'w UiShadowsBatch>,
ui_meta: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let Some(batch) = batch else {
return RenderCommandResult::Skip;
};
let ui_meta = ui_meta.into_inner();
let Some(vertices) = ui_meta.vertices.buffer() else {
return RenderCommandResult::Failure("missing vertices to draw ui");
};
let Some(indices) = ui_meta.indices.buffer() else {
return RenderCommandResult::Failure("missing indices to draw ui");
};
// Store the vertices
pass.set_vertex_buffer(0, vertices.slice(..));
// Define how to "connect" the vertices
pass.set_index_buffer(indices.slice(..), 0, IndexFormat::Uint32);
// Draw the vertices
pass.draw_indexed(batch.range.clone(), 0, 0..1);
RenderCommandResult::Success
}
}