
it's a followup of #1550 I think calling explicit methods/values instead of default makes the code easier to read: "what is `Quat::default()`" vs "Oh, it's `Quat::IDENTITY`" `Transform::identity()` and `GlobalTransform::identity()` can also be consts and I replaced the calls to their `default()` impl with `identity()`
381 lines
13 KiB
Rust
381 lines
13 KiB
Rust
use crate::{
|
|
mesh::{Indices, Mesh},
|
|
pipeline::PrimitiveTopology,
|
|
};
|
|
use bevy_math::{Vec2, Vec3};
|
|
|
|
/// A cylinder with hemispheres at the top and bottom
|
|
pub struct Capsule {
|
|
/// Radius on the xz plane.
|
|
pub radius: f32,
|
|
/// Number of sections in cylinder between hemispheres.
|
|
pub rings: usize,
|
|
/// Height of the middle cylinder on the y axis, excluding the hemispheres.
|
|
pub depth: f32,
|
|
/// Number of latitudes, distributed by inclination. Must be even.
|
|
pub latitudes: usize,
|
|
/// Number of longitudes, or meridians, distributed by azimuth.
|
|
pub longitudes: usize,
|
|
/// Manner in which UV coordinates are distributed vertically.
|
|
pub uv_profile: CapsuleUvProfile,
|
|
}
|
|
impl Default for Capsule {
|
|
fn default() -> Self {
|
|
Capsule {
|
|
radius: 0.5,
|
|
rings: 0,
|
|
depth: 1.0,
|
|
latitudes: 16,
|
|
longitudes: 32,
|
|
uv_profile: CapsuleUvProfile::Aspect,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy)]
|
|
/// Manner in which UV coordinates are distributed vertically.
|
|
pub enum CapsuleUvProfile {
|
|
/// UV space is distributed by how much of the capsule consists of the hemispheres.
|
|
Aspect,
|
|
/// Hemispheres get UV space according to the ratio of latitudes to rings.
|
|
Uniform,
|
|
/// Upper third of the texture goes to the northern hemisphere, middle third to the cylinder
|
|
/// and lower third to the southern one.
|
|
Fixed,
|
|
}
|
|
|
|
impl Default for CapsuleUvProfile {
|
|
fn default() -> Self {
|
|
CapsuleUvProfile::Aspect
|
|
}
|
|
}
|
|
|
|
impl From<Capsule> for Mesh {
|
|
#[allow(clippy::clippy::needless_range_loop)]
|
|
fn from(capsule: Capsule) -> Self {
|
|
// code adapted from https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db
|
|
|
|
let Capsule {
|
|
radius,
|
|
rings,
|
|
depth,
|
|
latitudes,
|
|
longitudes,
|
|
uv_profile,
|
|
} = capsule;
|
|
|
|
let calc_middle = rings > 0;
|
|
let half_lats = latitudes / 2;
|
|
let half_latsn1 = half_lats - 1;
|
|
let half_latsn2 = half_lats - 2;
|
|
let ringsp1 = rings + 1;
|
|
let lonsp1 = longitudes + 1;
|
|
let half_depth = depth * 0.5;
|
|
let summit = half_depth + radius;
|
|
|
|
// Vertex index offsets.
|
|
let vert_offset_north_hemi = longitudes;
|
|
let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
|
|
let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
|
|
let vert_offset_south_equator = if calc_middle {
|
|
vert_offset_cylinder + lonsp1 * rings
|
|
} else {
|
|
vert_offset_cylinder
|
|
};
|
|
let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
|
|
let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
|
|
let vert_offset_south_cap = vert_offset_south_polar + lonsp1;
|
|
|
|
// Initialize arrays.
|
|
let vert_len = vert_offset_south_cap + longitudes;
|
|
|
|
let mut vs: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
|
|
let mut vts: Vec<Vec2> = vec![Vec2::ZERO; vert_len];
|
|
let mut vns: Vec<Vec3> = vec![Vec3::ZERO; vert_len];
|
|
|
|
let to_theta = 2.0 * std::f32::consts::PI / longitudes as f32;
|
|
let to_phi = std::f32::consts::PI / latitudes as f32;
|
|
let to_tex_horizontal = 1.0 / longitudes as f32;
|
|
let to_tex_vertical = 1.0 / half_lats as f32;
|
|
|
|
let vt_aspect_ratio = match uv_profile {
|
|
CapsuleUvProfile::Aspect => radius / (depth + radius + radius),
|
|
CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
|
|
CapsuleUvProfile::Fixed => 1.0 / 3.0,
|
|
};
|
|
let vt_aspect_north = 1.0 - vt_aspect_ratio;
|
|
let vt_aspect_south = vt_aspect_ratio;
|
|
|
|
let mut theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes];
|
|
let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::ZERO; longitudes];
|
|
let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1];
|
|
|
|
for j in 0..longitudes {
|
|
let jf = j as f32;
|
|
let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
|
|
let theta = jf * to_theta;
|
|
|
|
let cos_theta = theta.cos();
|
|
let sin_theta = theta.sin();
|
|
|
|
theta_cartesian[j] = Vec2::new(cos_theta, sin_theta);
|
|
rho_theta_cartesian[j] = Vec2::new(radius * cos_theta, radius * sin_theta);
|
|
|
|
// North.
|
|
vs[j] = Vec3::new(0.0, summit, 0.0);
|
|
vts[j] = Vec2::new(s_texture_polar, 1.0);
|
|
vns[j] = Vec3::new(0.0, 1.0, 0.0);
|
|
|
|
// South.
|
|
let idx = vert_offset_south_cap + j;
|
|
vs[idx] = Vec3::new(0.0, -summit, 0.0);
|
|
vts[idx] = Vec2::new(s_texture_polar, 0.0);
|
|
vns[idx] = Vec3::new(0.0, -1.0, 0.0);
|
|
}
|
|
|
|
// Equatorial vertices.
|
|
for j in 0..lonsp1 {
|
|
let s_texture = 1.0 - j as f32 * to_tex_horizontal;
|
|
s_texture_cache[j] = s_texture;
|
|
|
|
// Wrap to first element upon reaching last.
|
|
let j_mod = j % longitudes;
|
|
let tc = theta_cartesian[j_mod];
|
|
let rtc = rho_theta_cartesian[j_mod];
|
|
|
|
// North equator.
|
|
let idxn = vert_offset_north_equator + j;
|
|
vs[idxn] = Vec3::new(rtc.x, half_depth, -rtc.y);
|
|
vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
|
|
vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);
|
|
|
|
// South equator.
|
|
let idxs = vert_offset_south_equator + j;
|
|
vs[idxs] = Vec3::new(rtc.x, -half_depth, -rtc.y);
|
|
vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
|
|
vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
|
|
}
|
|
|
|
// Hemisphere vertices.
|
|
for i in 0..half_latsn1 {
|
|
let ip1f = i as f32 + 1.0;
|
|
let phi = ip1f * to_phi;
|
|
|
|
// For coordinates.
|
|
let cos_phi_south = phi.cos();
|
|
let sin_phi_south = phi.sin();
|
|
|
|
// Symmetrical hemispheres mean cosine and sine only needs
|
|
// to be calculated once.
|
|
let cos_phi_north = sin_phi_south;
|
|
let sin_phi_north = -cos_phi_south;
|
|
|
|
let rho_cos_phi_north = radius * cos_phi_north;
|
|
let rho_sin_phi_north = radius * sin_phi_north;
|
|
let z_offset_north = half_depth - rho_sin_phi_north;
|
|
|
|
let rho_cos_phi_south = radius * cos_phi_south;
|
|
let rho_sin_phi_south = radius * sin_phi_south;
|
|
let z_offset_sout = -half_depth - rho_sin_phi_south;
|
|
|
|
// For texture coordinates.
|
|
let t_tex_fac = ip1f * to_tex_vertical;
|
|
let cmpl_tex_fac = 1.0 - t_tex_fac;
|
|
let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
|
|
let t_tex_south = cmpl_tex_fac * vt_aspect_south;
|
|
|
|
let i_lonsp1 = i * lonsp1;
|
|
let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
|
|
let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;
|
|
|
|
for j in 0..lonsp1 {
|
|
let j_mod = j % longitudes;
|
|
|
|
let s_texture = s_texture_cache[j];
|
|
let tc = theta_cartesian[j_mod];
|
|
|
|
// North hemisphere.
|
|
let idxn = vert_curr_lat_north + j;
|
|
vs[idxn] = Vec3::new(
|
|
rho_cos_phi_north * tc.x,
|
|
z_offset_north,
|
|
-rho_cos_phi_north * tc.y,
|
|
);
|
|
vts[idxn] = Vec2::new(s_texture, t_tex_north);
|
|
vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);
|
|
|
|
// South hemisphere.
|
|
let idxs = vert_curr_lat_south + j;
|
|
vs[idxs] = Vec3::new(
|
|
rho_cos_phi_south * tc.x,
|
|
z_offset_sout,
|
|
-rho_cos_phi_south * tc.y,
|
|
);
|
|
vts[idxs] = Vec2::new(s_texture, t_tex_south);
|
|
vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
|
|
}
|
|
}
|
|
|
|
// Cylinder vertices.
|
|
if calc_middle {
|
|
// Exclude both origin and destination edges
|
|
// (North and South equators) from the interpolation.
|
|
let to_fac = 1.0 / ringsp1 as f32;
|
|
let mut idx_cyl_lat = vert_offset_cylinder;
|
|
|
|
for h in 1..ringsp1 {
|
|
let fac = h as f32 * to_fac;
|
|
let cmpl_fac = 1.0 - fac;
|
|
let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
|
|
let z = half_depth - depth * fac;
|
|
|
|
for j in 0..lonsp1 {
|
|
let j_mod = j % longitudes;
|
|
let tc = theta_cartesian[j_mod];
|
|
let rtc = rho_theta_cartesian[j_mod];
|
|
let s_texture = s_texture_cache[j];
|
|
|
|
vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
|
|
vts[idx_cyl_lat] = Vec2::new(s_texture, t_texture);
|
|
vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);
|
|
|
|
idx_cyl_lat += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Triangle indices.
|
|
|
|
// Stride is 3 for polar triangles;
|
|
// stride is 6 for two triangles forming a quad.
|
|
let lons3 = longitudes * 3;
|
|
let lons6 = longitudes * 6;
|
|
let hemi_lons = half_latsn1 * lons6;
|
|
|
|
let tri_offset_north_hemi = lons3;
|
|
let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
|
|
let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
|
|
let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;
|
|
|
|
let fs_len = tri_offset_south_cap + lons3;
|
|
let mut tris: Vec<u32> = vec![0; fs_len];
|
|
|
|
// Polar caps.
|
|
let mut i = 0;
|
|
let mut k = 0;
|
|
let mut m = tri_offset_south_cap;
|
|
while i < longitudes {
|
|
// North.
|
|
tris[k] = i as u32;
|
|
tris[k + 1] = (vert_offset_north_hemi + i) as u32;
|
|
tris[k + 2] = (vert_offset_north_hemi + i + 1) as u32;
|
|
|
|
// South.
|
|
tris[m] = (vert_offset_south_cap + i) as u32;
|
|
tris[m + 1] = (vert_offset_south_polar + i + 1) as u32;
|
|
tris[m + 2] = (vert_offset_south_polar + i) as u32;
|
|
|
|
i += 1;
|
|
k += 3;
|
|
m += 3;
|
|
}
|
|
|
|
// Hemispheres.
|
|
|
|
let mut i = 0;
|
|
let mut k = tri_offset_north_hemi;
|
|
let mut m = tri_offset_south_hemi;
|
|
|
|
while i < half_latsn1 {
|
|
let i_lonsp1 = i * lonsp1;
|
|
|
|
let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
|
|
let vert_next_lat_north = vert_curr_lat_north + lonsp1;
|
|
|
|
let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
|
|
let vert_next_lat_south = vert_curr_lat_south + lonsp1;
|
|
|
|
let mut j = 0;
|
|
while j < longitudes {
|
|
// North.
|
|
let north00 = vert_curr_lat_north + j;
|
|
let north01 = vert_next_lat_north + j;
|
|
let north11 = vert_next_lat_north + j + 1;
|
|
let north10 = vert_curr_lat_north + j + 1;
|
|
|
|
tris[k] = north00 as u32;
|
|
tris[k + 1] = north11 as u32;
|
|
tris[k + 2] = north10 as u32;
|
|
|
|
tris[k + 3] = north00 as u32;
|
|
tris[k + 4] = north01 as u32;
|
|
tris[k + 5] = north11 as u32;
|
|
|
|
// South.
|
|
let south00 = vert_curr_lat_south + j;
|
|
let south01 = vert_next_lat_south + j;
|
|
let south11 = vert_next_lat_south + j + 1;
|
|
let south10 = vert_curr_lat_south + j + 1;
|
|
|
|
tris[m] = south00 as u32;
|
|
tris[m + 1] = south11 as u32;
|
|
tris[m + 2] = south10 as u32;
|
|
|
|
tris[m + 3] = south00 as u32;
|
|
tris[m + 4] = south01 as u32;
|
|
tris[m + 5] = south11 as u32;
|
|
|
|
j += 1;
|
|
k += 6;
|
|
m += 6;
|
|
}
|
|
|
|
i += 1;
|
|
}
|
|
|
|
// Cylinder.
|
|
let mut i = 0;
|
|
let mut k = tri_offset_cylinder;
|
|
|
|
while i < ringsp1 {
|
|
let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
|
|
let vert_next_lat = vert_curr_lat + lonsp1;
|
|
|
|
let mut j = 0;
|
|
while j < longitudes {
|
|
let cy00 = vert_curr_lat + j;
|
|
let cy01 = vert_next_lat + j;
|
|
let cy11 = vert_next_lat + j + 1;
|
|
let cy10 = vert_curr_lat + j + 1;
|
|
|
|
tris[k] = cy00 as u32;
|
|
tris[k + 1] = cy11 as u32;
|
|
tris[k + 2] = cy10 as u32;
|
|
|
|
tris[k + 3] = cy00 as u32;
|
|
tris[k + 4] = cy01 as u32;
|
|
tris[k + 5] = cy11 as u32;
|
|
|
|
j += 1;
|
|
k += 6;
|
|
}
|
|
|
|
i += 1;
|
|
}
|
|
|
|
let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
|
|
let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
|
|
let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();
|
|
|
|
assert_eq!(vs.len(), vert_len);
|
|
assert_eq!(tris.len(), fs_len);
|
|
|
|
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
|
|
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, vs);
|
|
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, vns);
|
|
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, vts);
|
|
mesh.set_indices(Some(Indices::U32(tris)));
|
|
mesh
|
|
}
|
|
}
|