bevy/crates/bevy_render/src/sync_world.rs
Vic 35cfef7cf2
Rename EntityBorrow/TrustedEntityBorrow to ContainsEntity/EntityEquivalent (#18470)
# Objective

Fixes #9367.

Yet another follow-up to #16547.

These traits were initially based on `Borrow<Entity>` because that trait
was what they were replacing, and it felt close enough in meaning.
However, they ultimately don't quite match: `borrow` always returns
references, whereas `EntityBorrow` always returns a plain `Entity`.
Additionally, `EntityBorrow` can imply that we are borrowing an `Entity`
from the ECS, which is not what it does.

Due to its safety contract, `TrustedEntityBorrow` is important an
important and widely used trait for `EntitySet` functionality.
In contrast, the safe `EntityBorrow` does not see much use, because even
outside of `EntitySet`-related functionality, it is a better idea to
accept `TrustedEntityBorrow` over `EntityBorrow`.

Furthermore, as #9367 points out, abstracting over returning `Entity`
from pointers/structs that contain it can skip some ergonomic friction.

On top of that, there are aspects of #18319 and #18408 that are relevant
to naming:
We've run into the issue that relying on a type default can switch
generic order. This is livable in some contexts, but unacceptable in
others.

To remedy that, we'd need to switch to a type alias approach: 
The "defaulted" `Entity` case becomes a
`UniqueEntity*`/`Entity*Map`/`Entity*Set` alias, and the base type
receives a more general name. `TrustedEntityBorrow` does not mesh
clearly with sensible base type names.

## Solution
Replace any `EntityBorrow` bounds with `TrustedEntityBorrow`.
+
Rename them as such:
`EntityBorrow` -> `ContainsEntity`
`TrustedEntityBorrow` -> `EntityEquivalent`

For `EntityBorrow` we produce a change in meaning; We designate it for
types that aren't necessarily strict wrappers around `Entity` or some
pointer to `Entity`, but rather any of the myriad of types that contain
a single associated `Entity`.
This pattern can already be seen in the common `entity`/`id` methods
across the engine.
We do not mean for `ContainsEntity` to be a trait that abstracts input
API (like how `AsRef<T>` is often used, f.e.), because eliding
`entity()` would be too implicit in the general case.

We prefix "Contains" to match the intuition of a struct with an `Entity`
field, like some contain a `length` or `capacity`.
It gives the impression of structure, which avoids the implication of a
relationship to the `ECS`.
`HasEntity` f.e. could be interpreted as "a currently live entity", 

As an input trait for APIs like #9367 envisioned, `TrustedEntityBorrow`
is a better fit, because it *does* restrict itself to strict wrappers
and pointers. Which is why we replace any
`EntityBorrow`/`ContainsEntity` bounds with
`TrustedEntityBorrow`/`EntityEquivalent`.

Here, the name `EntityEquivalent` is a lot closer to its actual meaning,
which is "A type that is both equivalent to an `Entity`, and forms the
same total order when compared".
Prior art for this is the
[`Equivalent`](https://docs.rs/hashbrown/latest/hashbrown/trait.Equivalent.html)
trait in `hashbrown`, which utilizes both `Borrow` and `Eq` for its one
blanket impl!

Given that we lose the `Borrow` moniker, and `Equivalent` can carry
various meanings, we expand on the safety comment of `EntityEquivalent`
somewhat. That should help prevent the confusion we saw in
[#18408](https://github.com/bevyengine/bevy/pull/18408#issuecomment-2742094176).

The new name meshes a lot better with the type aliasing approach in
#18408, by aligning with the base name `EntityEquivalentHashMap`.
For a consistent scheme among all set types, we can use this scheme for
the `UniqueEntity*` wrapper types as well!
This allows us to undo the switched generic order that was introduced to
`UniqueEntityArray` by its `Entity` default.

Even without the type aliases, I think these renames are worth doing!

## Migration Guide

Any use of `EntityBorrow` becomes `ContainsEntity`.
Any use of `TrustedEntityBorrow` becomes `EntityEquivalent`.
2025-03-30 06:04:26 +00:00

564 lines
21 KiB
Rust

use bevy_app::Plugin;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::entity::EntityHash;
use bevy_ecs::{
component::Component,
entity::{ContainsEntity, Entity, EntityEquivalent},
observer::Trigger,
query::With,
reflect::ReflectComponent,
resource::Resource,
system::{Local, Query, ResMut, SystemState},
world::{Mut, OnAdd, OnRemove, World},
};
use bevy_platform_support::collections::{HashMap, HashSet};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
/// A plugin that synchronizes entities with [`SyncToRenderWorld`] between the main world and the render world.
///
/// All entities with the [`SyncToRenderWorld`] component are kept in sync. It
/// is automatically added as a required component by [`ExtractComponentPlugin`]
/// and [`SyncComponentPlugin`], so it doesn't need to be added manually when
/// spawning or as a required component when either of these plugins are used.
///
/// # Implementation
///
/// Bevy's renderer is architected independently from the main app.
/// It operates in its own separate ECS [`World`], so the renderer logic can run in parallel with the main world logic.
/// This is called "Pipelined Rendering", see [`PipelinedRenderingPlugin`] for more information.
///
/// [`SyncWorldPlugin`] is the first thing that runs every frame and it maintains an entity-to-entity mapping
/// between the main world and the render world.
/// It does so by spawning and despawning entities in the render world, to match spawned and despawned entities in the main world.
/// The link between synced entities is maintained by the [`RenderEntity`] and [`MainEntity`] components.
///
/// The [`RenderEntity`] contains the corresponding render world entity of a main world entity, while [`MainEntity`] contains
/// the corresponding main world entity of a render world entity.
/// For convenience, [`QueryData`](bevy_ecs::query::QueryData) implementations are provided for both components:
/// adding [`MainEntity`] to a query (without a `&`) will return the corresponding main world [`Entity`],
/// and adding [`RenderEntity`] will return the corresponding render world [`Entity`].
/// If you have access to the component itself, the underlying entities can be accessed by calling `.id()`.
///
/// Synchronization is necessary preparation for extraction ([`ExtractSchedule`](crate::ExtractSchedule)), which copies over component data from the main
/// to the render world for these entities.
///
/// ```text
/// |--------------------------------------------------------------------|
/// | | | Main world update |
/// | sync | extract |---------------------------------------------------|
/// | | | Render world update |
/// |--------------------------------------------------------------------|
/// ```
///
/// An example for synchronized main entities 1v1 and 18v1
///
/// ```text
/// |---------------------------Main World------------------------------|
/// | Entity | Component |
/// |-------------------------------------------------------------------|
/// | ID: 1v1 | PointLight | RenderEntity(ID: 3V1) | SyncToRenderWorld |
/// | ID: 18v1 | PointLight | RenderEntity(ID: 5V1) | SyncToRenderWorld |
/// |-------------------------------------------------------------------|
///
/// |----------Render World-----------|
/// | Entity | Component |
/// |---------------------------------|
/// | ID: 3v1 | MainEntity(ID: 1V1) |
/// | ID: 5v1 | MainEntity(ID: 18V1) |
/// |---------------------------------|
///
/// ```
///
/// Note that this effectively establishes a link between the main world entity and the render world entity.
/// Not every entity needs to be synchronized, however; only entities with the [`SyncToRenderWorld`] component are synced.
/// Adding [`SyncToRenderWorld`] to a main world component will establish such a link.
/// Once a synchronized main entity is despawned, its corresponding render entity will be automatically
/// despawned in the next `sync`.
///
/// The sync step does not copy any of component data between worlds, since its often not necessary to transfer over all
/// the components of a main world entity.
/// The render world probably cares about a `Position` component, but not a `Velocity` component.
/// The extraction happens in its own step, independently from, and after synchronization.
///
/// Moreover, [`SyncWorldPlugin`] only synchronizes *entities*. [`RenderAsset`](crate::render_asset::RenderAsset)s like meshes and textures are handled
/// differently.
///
/// [`PipelinedRenderingPlugin`]: crate::pipelined_rendering::PipelinedRenderingPlugin
/// [`ExtractComponentPlugin`]: crate::extract_component::ExtractComponentPlugin
/// [`SyncComponentPlugin`]: crate::sync_component::SyncComponentPlugin
#[derive(Default)]
pub struct SyncWorldPlugin;
impl Plugin for SyncWorldPlugin {
fn build(&self, app: &mut bevy_app::App) {
app.init_resource::<PendingSyncEntity>();
app.add_observer(
|trigger: Trigger<OnAdd, SyncToRenderWorld>, mut pending: ResMut<PendingSyncEntity>| {
pending.push(EntityRecord::Added(trigger.target()));
},
);
app.add_observer(
|trigger: Trigger<OnRemove, SyncToRenderWorld>,
mut pending: ResMut<PendingSyncEntity>,
query: Query<&RenderEntity>| {
if let Ok(e) = query.get(trigger.target()) {
pending.push(EntityRecord::Removed(*e));
};
},
);
}
}
/// Marker component that indicates that its entity needs to be synchronized to the render world.
///
/// This component is automatically added as a required component by [`ExtractComponentPlugin`] and [`SyncComponentPlugin`].
/// For more information see [`SyncWorldPlugin`].
///
/// NOTE: This component should persist throughout the entity's entire lifecycle.
/// If this component is removed from its entity, the entity will be despawned.
///
/// [`ExtractComponentPlugin`]: crate::extract_component::ExtractComponentPlugin
/// [`SyncComponentPlugin`]: crate::sync_component::SyncComponentPlugin
#[derive(Component, Copy, Clone, Debug, Default, Reflect)]
#[reflect[Component, Default, Clone]]
#[component(storage = "SparseSet")]
pub struct SyncToRenderWorld;
/// Component added on the main world entities that are synced to the Render World in order to keep track of the corresponding render world entity.
///
/// Can also be used as a newtype wrapper for render world entities.
#[derive(Component, Deref, Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct RenderEntity(Entity);
impl RenderEntity {
#[inline]
pub fn id(&self) -> Entity {
self.0
}
}
impl From<Entity> for RenderEntity {
fn from(entity: Entity) -> Self {
RenderEntity(entity)
}
}
impl ContainsEntity for RenderEntity {
fn entity(&self) -> Entity {
self.id()
}
}
// SAFETY: RenderEntity is a newtype around Entity that derives its comparison traits.
unsafe impl EntityEquivalent for RenderEntity {}
/// Component added on the render world entities to keep track of the corresponding main world entity.
///
/// Can also be used as a newtype wrapper for main world entities.
#[derive(Component, Deref, Copy, Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct MainEntity(Entity);
impl MainEntity {
#[inline]
pub fn id(&self) -> Entity {
self.0
}
}
impl From<Entity> for MainEntity {
fn from(entity: Entity) -> Self {
MainEntity(entity)
}
}
impl ContainsEntity for MainEntity {
fn entity(&self) -> Entity {
self.id()
}
}
// SAFETY: RenderEntity is a newtype around Entity that derives its comparison traits.
unsafe impl EntityEquivalent for MainEntity {}
/// A [`HashMap`] pre-configured to use [`EntityHash`] hashing with a [`MainEntity`].
pub type MainEntityHashMap<V> = HashMap<MainEntity, V, EntityHash>;
/// A [`HashSet`] pre-configured to use [`EntityHash`] hashing with a [`MainEntity`]..
pub type MainEntityHashSet = HashSet<MainEntity, EntityHash>;
/// Marker component that indicates that its entity needs to be despawned at the end of the frame.
#[derive(Component, Copy, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Clone)]
pub struct TemporaryRenderEntity;
/// A record enum to what entities with [`SyncToRenderWorld`] have been added or removed.
#[derive(Debug)]
pub(crate) enum EntityRecord {
/// When an entity is spawned on the main world, notify the render world so that it can spawn a corresponding
/// entity. This contains the main world entity.
Added(Entity),
/// When an entity is despawned on the main world, notify the render world so that the corresponding entity can be
/// despawned. This contains the render world entity.
Removed(RenderEntity),
/// When a component is removed from an entity, notify the render world so that the corresponding component can be
/// removed. This contains the main world entity.
ComponentRemoved(Entity),
}
// Entity Record in MainWorld pending to Sync
#[derive(Resource, Default, Deref, DerefMut)]
pub(crate) struct PendingSyncEntity {
records: Vec<EntityRecord>,
}
pub(crate) fn entity_sync_system(main_world: &mut World, render_world: &mut World) {
main_world.resource_scope(|world, mut pending: Mut<PendingSyncEntity>| {
// TODO : batching record
for record in pending.drain(..) {
match record {
EntityRecord::Added(e) => {
if let Ok(mut main_entity) = world.get_entity_mut(e) {
match main_entity.entry::<RenderEntity>() {
bevy_ecs::world::Entry::Occupied(_) => {
panic!("Attempting to synchronize an entity that has already been synchronized!");
}
bevy_ecs::world::Entry::Vacant(entry) => {
let id = render_world.spawn(MainEntity(e)).id();
entry.insert(RenderEntity(id));
}
};
}
}
EntityRecord::Removed(render_entity) => {
if let Ok(ec) = render_world.get_entity_mut(render_entity.id()) {
ec.despawn();
};
}
EntityRecord::ComponentRemoved(main_entity) => {
let Some(mut render_entity) = world.get_mut::<RenderEntity>(main_entity) else {
continue;
};
if let Ok(render_world_entity) = render_world.get_entity_mut(render_entity.id()) {
// In order to handle components that extract to derived components, we clear the entity
// and let the extraction system re-add the components.
render_world_entity.despawn();
let id = render_world.spawn(MainEntity(main_entity)).id();
render_entity.0 = id;
}
},
}
}
});
}
pub(crate) fn despawn_temporary_render_entities(
world: &mut World,
state: &mut SystemState<Query<Entity, With<TemporaryRenderEntity>>>,
mut local: Local<Vec<Entity>>,
) {
let query = state.get(world);
local.extend(query.iter());
// Ensure next frame allocation keeps order
local.sort_unstable_by_key(|e| e.index());
for e in local.drain(..).rev() {
world.despawn(e);
}
}
/// This module exists to keep the complex unsafe code out of the main module.
///
/// The implementations for both [`MainEntity`] and [`RenderEntity`] should stay in sync,
/// and are based off of the `&T` implementation in `bevy_ecs`.
mod render_entities_world_query_impls {
use super::{MainEntity, RenderEntity};
use bevy_ecs::{
archetype::Archetype,
component::{ComponentId, Components, Tick},
entity::Entity,
query::{FilteredAccess, QueryData, ReadOnlyQueryData, WorldQuery},
storage::{Table, TableRow},
world::{unsafe_world_cell::UnsafeWorldCell, World},
};
/// SAFETY: defers completely to `&RenderEntity` implementation,
/// and then only modifies the output safely.
unsafe impl WorldQuery for RenderEntity {
type Fetch<'w> = <&'static RenderEntity as WorldQuery>::Fetch<'w>;
type State = <&'static RenderEntity as WorldQuery>::State;
fn shrink_fetch<'wlong: 'wshort, 'wshort>(
fetch: Self::Fetch<'wlong>,
) -> Self::Fetch<'wshort> {
fetch
}
#[inline]
unsafe fn init_fetch<'w>(
world: UnsafeWorldCell<'w>,
component_id: &ComponentId,
last_run: Tick,
this_run: Tick,
) -> Self::Fetch<'w> {
// SAFETY: defers to the `&T` implementation, with T set to `RenderEntity`.
unsafe {
<&RenderEntity as WorldQuery>::init_fetch(world, component_id, last_run, this_run)
}
}
const IS_DENSE: bool = <&'static RenderEntity as WorldQuery>::IS_DENSE;
#[inline]
unsafe fn set_archetype<'w>(
fetch: &mut Self::Fetch<'w>,
component_id: &ComponentId,
archetype: &'w Archetype,
table: &'w Table,
) {
// SAFETY: defers to the `&T` implementation, with T set to `RenderEntity`.
unsafe {
<&RenderEntity as WorldQuery>::set_archetype(fetch, component_id, archetype, table);
}
}
#[inline]
unsafe fn set_table<'w>(
fetch: &mut Self::Fetch<'w>,
&component_id: &ComponentId,
table: &'w Table,
) {
// SAFETY: defers to the `&T` implementation, with T set to `RenderEntity`.
unsafe { <&RenderEntity as WorldQuery>::set_table(fetch, &component_id, table) }
}
fn update_component_access(
&component_id: &ComponentId,
access: &mut FilteredAccess<ComponentId>,
) {
<&RenderEntity as WorldQuery>::update_component_access(&component_id, access);
}
fn init_state(world: &mut World) -> ComponentId {
<&RenderEntity as WorldQuery>::init_state(world)
}
fn get_state(components: &Components) -> Option<Self::State> {
<&RenderEntity as WorldQuery>::get_state(components)
}
fn matches_component_set(
&state: &ComponentId,
set_contains_id: &impl Fn(ComponentId) -> bool,
) -> bool {
<&RenderEntity as WorldQuery>::matches_component_set(&state, set_contains_id)
}
}
// SAFETY: Component access of Self::ReadOnly is a subset of Self.
// Self::ReadOnly matches exactly the same archetypes/tables as Self.
unsafe impl QueryData for RenderEntity {
const IS_READ_ONLY: bool = true;
type ReadOnly = RenderEntity;
type Item<'w> = Entity;
fn shrink<'wlong: 'wshort, 'wshort>(item: Entity) -> Entity {
item
}
#[inline(always)]
unsafe fn fetch<'w>(
fetch: &mut Self::Fetch<'w>,
entity: Entity,
table_row: TableRow,
) -> Self::Item<'w> {
// SAFETY: defers to the `&T` implementation, with T set to `RenderEntity`.
let component =
unsafe { <&RenderEntity as QueryData>::fetch(fetch, entity, table_row) };
component.id()
}
}
// SAFETY: the underlying `Entity` is copied, and no mutable access is provided.
unsafe impl ReadOnlyQueryData for RenderEntity {}
/// SAFETY: defers completely to `&RenderEntity` implementation,
/// and then only modifies the output safely.
unsafe impl WorldQuery for MainEntity {
type Fetch<'w> = <&'static MainEntity as WorldQuery>::Fetch<'w>;
type State = <&'static MainEntity as WorldQuery>::State;
fn shrink_fetch<'wlong: 'wshort, 'wshort>(
fetch: Self::Fetch<'wlong>,
) -> Self::Fetch<'wshort> {
fetch
}
#[inline]
unsafe fn init_fetch<'w>(
world: UnsafeWorldCell<'w>,
component_id: &ComponentId,
last_run: Tick,
this_run: Tick,
) -> Self::Fetch<'w> {
// SAFETY: defers to the `&T` implementation, with T set to `MainEntity`.
unsafe {
<&MainEntity as WorldQuery>::init_fetch(world, component_id, last_run, this_run)
}
}
const IS_DENSE: bool = <&'static MainEntity as WorldQuery>::IS_DENSE;
#[inline]
unsafe fn set_archetype<'w>(
fetch: &mut Self::Fetch<'w>,
component_id: &ComponentId,
archetype: &'w Archetype,
table: &'w Table,
) {
// SAFETY: defers to the `&T` implementation, with T set to `MainEntity`.
unsafe {
<&MainEntity as WorldQuery>::set_archetype(fetch, component_id, archetype, table);
}
}
#[inline]
unsafe fn set_table<'w>(
fetch: &mut Self::Fetch<'w>,
&component_id: &ComponentId,
table: &'w Table,
) {
// SAFETY: defers to the `&T` implementation, with T set to `MainEntity`.
unsafe { <&MainEntity as WorldQuery>::set_table(fetch, &component_id, table) }
}
fn update_component_access(
&component_id: &ComponentId,
access: &mut FilteredAccess<ComponentId>,
) {
<&MainEntity as WorldQuery>::update_component_access(&component_id, access);
}
fn init_state(world: &mut World) -> ComponentId {
<&MainEntity as WorldQuery>::init_state(world)
}
fn get_state(components: &Components) -> Option<Self::State> {
<&MainEntity as WorldQuery>::get_state(components)
}
fn matches_component_set(
&state: &ComponentId,
set_contains_id: &impl Fn(ComponentId) -> bool,
) -> bool {
<&MainEntity as WorldQuery>::matches_component_set(&state, set_contains_id)
}
}
// SAFETY: Component access of Self::ReadOnly is a subset of Self.
// Self::ReadOnly matches exactly the same archetypes/tables as Self.
unsafe impl QueryData for MainEntity {
const IS_READ_ONLY: bool = true;
type ReadOnly = MainEntity;
type Item<'w> = Entity;
fn shrink<'wlong: 'wshort, 'wshort>(item: Entity) -> Entity {
item
}
#[inline(always)]
unsafe fn fetch<'w>(
fetch: &mut Self::Fetch<'w>,
entity: Entity,
table_row: TableRow,
) -> Self::Item<'w> {
// SAFETY: defers to the `&T` implementation, with T set to `MainEntity`.
let component = unsafe { <&MainEntity as QueryData>::fetch(fetch, entity, table_row) };
component.id()
}
}
// SAFETY: the underlying `Entity` is copied, and no mutable access is provided.
unsafe impl ReadOnlyQueryData for MainEntity {}
}
#[cfg(test)]
mod tests {
use bevy_ecs::{
component::Component,
entity::Entity,
observer::Trigger,
query::With,
system::{Query, ResMut},
world::{OnAdd, OnRemove, World},
};
use super::{
entity_sync_system, EntityRecord, MainEntity, PendingSyncEntity, RenderEntity,
SyncToRenderWorld,
};
#[derive(Component)]
struct RenderDataComponent;
#[test]
fn sync_world() {
let mut main_world = World::new();
let mut render_world = World::new();
main_world.init_resource::<PendingSyncEntity>();
main_world.add_observer(
|trigger: Trigger<OnAdd, SyncToRenderWorld>, mut pending: ResMut<PendingSyncEntity>| {
pending.push(EntityRecord::Added(trigger.target()));
},
);
main_world.add_observer(
|trigger: Trigger<OnRemove, SyncToRenderWorld>,
mut pending: ResMut<PendingSyncEntity>,
query: Query<&RenderEntity>| {
if let Ok(e) = query.get(trigger.target()) {
pending.push(EntityRecord::Removed(*e));
};
},
);
// spawn some empty entities for test
for _ in 0..99 {
main_world.spawn_empty();
}
// spawn
let main_entity = main_world
.spawn(RenderDataComponent)
// indicates that its entity needs to be synchronized to the render world
.insert(SyncToRenderWorld)
.id();
entity_sync_system(&mut main_world, &mut render_world);
let mut q = render_world.query_filtered::<Entity, With<MainEntity>>();
// Only one synchronized entity
assert!(q.iter(&render_world).count() == 1);
let render_entity = q.single(&render_world).unwrap();
let render_entity_component = main_world.get::<RenderEntity>(main_entity).unwrap();
assert!(render_entity_component.id() == render_entity);
let main_entity_component = render_world
.get::<MainEntity>(render_entity_component.id())
.unwrap();
assert!(main_entity_component.id() == main_entity);
// despawn
main_world.despawn(main_entity);
entity_sync_system(&mut main_world, &mut render_world);
// Only one synchronized entity
assert!(q.iter(&render_world).count() == 0);
}
}