
# Objective As discussed in #14275, Bevy is currently too prone to panic, and makes the easy / beginner-friendly way to do a large number of operations just to panic on failure. This is seriously frustrating in library code, but also slows down development, as many of the `Query::single` panics can actually safely be an early return (these panics are often due to a small ordering issue or a change in game state. More critically, in most "finished" products, panics are unacceptable: any unexpected failures should be handled elsewhere. That's where the new With the advent of good system error handling, we can now remove this. Note: I was instrumental in a) introducing this idea in the first place and b) pushing to make the panicking variant the default. The introduction of both `let else` statements in Rust and the fancy system error handling work in 0.16 have changed my mind on the right balance here. ## Solution 1. Make `Query::single` and `Query::single_mut` (and other random related methods) return a `Result`. 2. Handle all of Bevy's internal usage of these APIs. 3. Deprecate `Query::get_single` and friends, since we've moved their functionality to the nice names. 4. Add detailed advice on how to best handle these errors. Generally I like the diff here, although `get_single().unwrap()` in tests is a bit of a downgrade. ## Testing I've done a global search for `.single` to track down any missed deprecated usages. As to whether or not all the migrations were successful, that's what CI is for :) ## Future work ~~Rename `Query::get_single` and friends to `Query::single`!~~ ~~I've opted not to do this in this PR, and smear it across two releases in order to ease the migration. Successive deprecations are much easier to manage than the semantics and types shifting under your feet.~~ Cart has convinced me to change my mind on this; see https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085. ## Migration guide `Query::single`, `Query::single_mut` and their `QueryState` equivalents now return a `Result`. Generally, you'll want to: 1. Use Bevy 0.16's system error handling to return a `Result` using the `?` operator. 2. Use a `let else Ok(data)` block to early return if it's an expected failure. 3. Use `unwrap()` or `Ok` destructuring inside of tests. The old `Query::get_single` (etc) methods which did this have been deprecated.
220 lines
6.8 KiB
Rust
220 lines
6.8 KiB
Rust
//! Demonstrates how to observe life-cycle triggers as well as define custom ones.
|
|
|
|
use bevy::{
|
|
platform_support::collections::{HashMap, HashSet},
|
|
prelude::*,
|
|
};
|
|
use rand::{Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.init_resource::<SpatialIndex>()
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (draw_shapes, handle_click))
|
|
// Observers are systems that run when an event is "triggered". This observer runs whenever
|
|
// `ExplodeMines` is triggered.
|
|
.add_observer(
|
|
|trigger: Trigger<ExplodeMines>,
|
|
mines: Query<&Mine>,
|
|
index: Res<SpatialIndex>,
|
|
mut commands: Commands| {
|
|
// You can access the trigger data via the `Observer`
|
|
let event = trigger.event();
|
|
// Access resources
|
|
for e in index.get_nearby(event.pos) {
|
|
// Run queries
|
|
let mine = mines.get(e).unwrap();
|
|
if mine.pos.distance(event.pos) < mine.size + event.radius {
|
|
// And queue commands, including triggering additional events
|
|
// Here we trigger the `Explode` event for entity `e`
|
|
commands.trigger_targets(Explode, e);
|
|
}
|
|
}
|
|
},
|
|
)
|
|
// This observer runs whenever the `Mine` component is added to an entity, and places it in a simple spatial index.
|
|
.add_observer(on_add_mine)
|
|
// This observer runs whenever the `Mine` component is removed from an entity (including despawning it)
|
|
// and removes it from the spatial index.
|
|
.add_observer(on_remove_mine)
|
|
.run();
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct Mine {
|
|
pos: Vec2,
|
|
size: f32,
|
|
}
|
|
|
|
impl Mine {
|
|
fn random(rand: &mut ChaCha8Rng) -> Self {
|
|
Mine {
|
|
pos: Vec2::new(
|
|
(rand.r#gen::<f32>() - 0.5) * 1200.0,
|
|
(rand.r#gen::<f32>() - 0.5) * 600.0,
|
|
),
|
|
size: 4.0 + rand.r#gen::<f32>() * 16.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Event)]
|
|
struct ExplodeMines {
|
|
pos: Vec2,
|
|
radius: f32,
|
|
}
|
|
|
|
#[derive(Event)]
|
|
struct Explode;
|
|
|
|
fn setup(mut commands: Commands) {
|
|
commands.spawn(Camera2d);
|
|
commands.spawn((
|
|
Text::new(
|
|
"Click on a \"Mine\" to trigger it.\n\
|
|
When it explodes it will trigger all overlapping mines.",
|
|
),
|
|
Node {
|
|
position_type: PositionType::Absolute,
|
|
top: Val::Px(12.),
|
|
left: Val::Px(12.),
|
|
..default()
|
|
},
|
|
));
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
|
|
|
|
commands
|
|
.spawn(Mine::random(&mut rng))
|
|
// Observers can watch for events targeting a specific entity.
|
|
// This will create a new observer that runs whenever the Explode event
|
|
// is triggered for this spawned entity.
|
|
.observe(explode_mine);
|
|
|
|
// We want to spawn a bunch of mines. We could just call the code above for each of them.
|
|
// That would create a new observer instance for every Mine entity. Having duplicate observers
|
|
// generally isn't worth worrying about as the overhead is low. But if you want to be maximally efficient,
|
|
// you can reuse observers across entities.
|
|
//
|
|
// First, observers are actually just entities with the Observer component! The `observe()` functions
|
|
// you've seen so far in this example are just shorthand for manually spawning an observer.
|
|
let mut observer = Observer::new(explode_mine);
|
|
|
|
// As we spawn entities, we can make this observer watch each of them:
|
|
for _ in 0..1000 {
|
|
let entity = commands.spawn(Mine::random(&mut rng)).id();
|
|
observer.watch_entity(entity);
|
|
}
|
|
|
|
// By spawning the Observer component, it becomes active!
|
|
commands.spawn(observer);
|
|
}
|
|
|
|
fn on_add_mine(
|
|
trigger: Trigger<OnAdd, Mine>,
|
|
query: Query<&Mine>,
|
|
mut index: ResMut<SpatialIndex>,
|
|
) {
|
|
let mine = query.get(trigger.target()).unwrap();
|
|
let tile = (
|
|
(mine.pos.x / CELL_SIZE).floor() as i32,
|
|
(mine.pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
index.map.entry(tile).or_default().insert(trigger.target());
|
|
}
|
|
|
|
// Remove despawned mines from our index
|
|
fn on_remove_mine(
|
|
trigger: Trigger<OnRemove, Mine>,
|
|
query: Query<&Mine>,
|
|
mut index: ResMut<SpatialIndex>,
|
|
) {
|
|
let mine = query.get(trigger.target()).unwrap();
|
|
let tile = (
|
|
(mine.pos.x / CELL_SIZE).floor() as i32,
|
|
(mine.pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
index.map.entry(tile).and_modify(|set| {
|
|
set.remove(&trigger.target());
|
|
});
|
|
}
|
|
|
|
fn explode_mine(trigger: Trigger<Explode>, query: Query<&Mine>, mut commands: Commands) {
|
|
// If a triggered event is targeting a specific entity you can access it with `.target()`
|
|
let id = trigger.target();
|
|
let Ok(mut entity) = commands.get_entity(id) else {
|
|
return;
|
|
};
|
|
info!("Boom! {} exploded.", id.index());
|
|
entity.despawn();
|
|
let mine = query.get(id).unwrap();
|
|
// Trigger another explosion cascade.
|
|
commands.trigger(ExplodeMines {
|
|
pos: mine.pos,
|
|
radius: mine.size,
|
|
});
|
|
}
|
|
|
|
// Draw a circle for each mine using `Gizmos`
|
|
fn draw_shapes(mut gizmos: Gizmos, mines: Query<&Mine>) {
|
|
for mine in &mines {
|
|
gizmos.circle_2d(
|
|
mine.pos,
|
|
mine.size,
|
|
Color::hsl((mine.size - 4.0) / 16.0 * 360.0, 1.0, 0.8),
|
|
);
|
|
}
|
|
}
|
|
|
|
// Trigger `ExplodeMines` at the position of a given click
|
|
fn handle_click(
|
|
mouse_button_input: Res<ButtonInput<MouseButton>>,
|
|
camera: Single<(&Camera, &GlobalTransform)>,
|
|
windows: Query<&Window>,
|
|
mut commands: Commands,
|
|
) {
|
|
let Ok(windows) = windows.single() else {
|
|
return;
|
|
};
|
|
|
|
let (camera, camera_transform) = *camera;
|
|
if let Some(pos) = windows
|
|
.cursor_position()
|
|
.and_then(|cursor| camera.viewport_to_world(camera_transform, cursor).ok())
|
|
.map(|ray| ray.origin.truncate())
|
|
{
|
|
if mouse_button_input.just_pressed(MouseButton::Left) {
|
|
commands.trigger(ExplodeMines { pos, radius: 1.0 });
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Resource, Default)]
|
|
struct SpatialIndex {
|
|
map: HashMap<(i32, i32), HashSet<Entity>>,
|
|
}
|
|
|
|
/// Cell size has to be bigger than any `TriggerMine::radius`
|
|
const CELL_SIZE: f32 = 64.0;
|
|
|
|
impl SpatialIndex {
|
|
// Lookup all entities within adjacent cells of our spatial index
|
|
fn get_nearby(&self, pos: Vec2) -> Vec<Entity> {
|
|
let tile = (
|
|
(pos.x / CELL_SIZE).floor() as i32,
|
|
(pos.y / CELL_SIZE).floor() as i32,
|
|
);
|
|
let mut nearby = Vec::new();
|
|
for x in -1..2 {
|
|
for y in -1..2 {
|
|
if let Some(mines) = self.map.get(&(tile.0 + x, tile.1 + y)) {
|
|
nearby.extend(mines.iter());
|
|
}
|
|
}
|
|
}
|
|
nearby
|
|
}
|
|
}
|