bevy/crates/bevy_ecs/src/system/system_piping.rs
Alice Cecile c0a93aa7a4 Rename system chaining to system piping (#6230)
# Objective

> System chaining is a confusing name: it implies the ability to construct non-linear graphs, and suggests a sense of system ordering that is only incidentally true. Instead, it actually works by passing data from one system to the next, much like the pipe operator.

> In the accepted [stageless RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/45-stageless.md), this concept is renamed to piping, and "system chaining" is used to construct groups of systems with ordering dependencies between them.

Fixes #6225.

## Changelog

System chaining has been renamed to system piping to improve clarity (and free up the name for new ordering APIs). 

## Migration Guide

The `.chain(handler_system)` method on systems is now `.pipe(handler_system)`.
The `IntoChainSystem` trait is now `IntoPipeSystem`, and the `ChainSystem` struct is now `PipeSystem`.
2022-10-11 15:21:12 +00:00

288 lines
9.4 KiB
Rust

use crate::{
archetype::ArchetypeComponentId,
component::ComponentId,
query::Access,
system::{IntoSystem, System},
world::World,
};
use std::borrow::Cow;
/// A [`System`] created by piping the output of the first system into the input of the second.
///
/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
///
/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
/// equal to the input type of `B`.
///
/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
///
/// # Examples
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = parse_message_system.pipe(filter_system);
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
pub struct PipeSystem<SystemA, SystemB> {
system_a: SystemA,
system_b: SystemB,
name: Cow<'static, str>,
component_access: Access<ComponentId>,
archetype_component_access: Access<ArchetypeComponentId>,
}
impl<SystemA: System, SystemB: System<In = SystemA::Out>> System for PipeSystem<SystemA, SystemB> {
type In = SystemA::In;
type Out = SystemB::Out;
fn name(&self) -> Cow<'static, str> {
self.name.clone()
}
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
&self.archetype_component_access
}
fn component_access(&self) -> &Access<ComponentId> {
&self.component_access
}
fn is_send(&self) -> bool {
self.system_a.is_send() && self.system_b.is_send()
}
fn is_exclusive(&self) -> bool {
self.system_a.is_exclusive() || self.system_b.is_exclusive()
}
unsafe fn run_unsafe(&mut self, input: Self::In, world: &World) -> Self::Out {
let out = self.system_a.run_unsafe(input, world);
self.system_b.run_unsafe(out, world)
}
fn apply_buffers(&mut self, world: &mut World) {
self.system_a.apply_buffers(world);
self.system_b.apply_buffers(world);
}
fn initialize(&mut self, world: &mut World) {
self.system_a.initialize(world);
self.system_b.initialize(world);
self.component_access
.extend(self.system_a.component_access());
self.component_access
.extend(self.system_b.component_access());
}
fn update_archetype_component_access(&mut self, world: &World) {
self.system_a.update_archetype_component_access(world);
self.system_b.update_archetype_component_access(world);
self.archetype_component_access
.extend(self.system_a.archetype_component_access());
self.archetype_component_access
.extend(self.system_b.archetype_component_access());
}
fn check_change_tick(&mut self, change_tick: u32) {
self.system_a.check_change_tick(change_tick);
self.system_b.check_change_tick(change_tick);
}
fn get_last_change_tick(&self) -> u32 {
self.system_a.get_last_change_tick()
}
fn set_last_change_tick(&mut self, last_change_tick: u32) {
self.system_a.set_last_change_tick(last_change_tick);
self.system_b.set_last_change_tick(last_change_tick);
}
}
/// An extension trait providing the [`IntoPipeSystem::pipe`] method to pass input from one system into the next.
///
/// The first system must have return type `T`
/// and the second system must have [`In<T>`](crate::system::In) as its first system parameter.
///
/// This trait is blanket implemented for all system pairs that fulfill the type requirements.
///
/// See [`PipeSystem`].
pub trait IntoPipeSystem<ParamA, Payload, SystemB, ParamB, Out>:
IntoSystem<(), Payload, ParamA> + Sized
where
SystemB: IntoSystem<Payload, Out, ParamB>,
{
/// Pass the output of this system `A` into a second system `B`, creating a new compound system.
fn pipe(self, system: SystemB) -> PipeSystem<Self::System, SystemB::System>;
}
impl<SystemA, ParamA, Payload, SystemB, ParamB, Out>
IntoPipeSystem<ParamA, Payload, SystemB, ParamB, Out> for SystemA
where
SystemA: IntoSystem<(), Payload, ParamA>,
SystemB: IntoSystem<Payload, Out, ParamB>,
{
fn pipe(self, system: SystemB) -> PipeSystem<SystemA::System, SystemB::System> {
let system_a = IntoSystem::into_system(self);
let system_b = IntoSystem::into_system(system);
PipeSystem {
name: Cow::Owned(format!("Pipe({}, {})", system_a.name(), system_b.name())),
system_a,
system_b,
archetype_component_access: Default::default(),
component_access: Default::default(),
}
}
}
/// A collection of common adapters for [piping](super::PipeSystem) the result of a system.
pub mod adapter {
use crate::system::In;
use std::fmt::Debug;
/// Converts a regular function into a system adapter.
///
/// # Examples
/// ```
/// use bevy_ecs::prelude::*;
///
/// return1
/// .pipe(system_adapter::new(u32::try_from))
/// .pipe(system_adapter::unwrap)
/// .pipe(print);
///
/// fn return1() -> u64 { 1 }
/// fn print(In(x): In<impl std::fmt::Debug>) {
/// println!("{x:?}");
/// }
/// ```
pub fn new<T, U>(mut f: impl FnMut(T) -> U) -> impl FnMut(In<T>) -> U {
move |In(x)| f(x)
}
/// System adapter that unwraps the `Ok` variant of a [`Result`].
/// This is useful for fallible systems that should panic in the case of an error.
///
/// There is no equivalent adapter for [`Option`]. Instead, it's best to provide
/// an error message and convert to a `Result` using `ok_or{_else}`.
///
/// # Examples
///
/// Panicking on error
///
/// ```
/// use bevy_ecs::prelude::*;
/// #
/// # #[derive(StageLabel)]
/// # enum CoreStage { Update };
///
/// // Building a new schedule/app...
/// # use bevy_ecs::schedule::SystemStage;
/// # let mut sched = Schedule::default(); sched
/// # .add_stage(CoreStage::Update, SystemStage::single_threaded())
/// .add_system_to_stage(
/// CoreStage::Update,
/// // Panic if the load system returns an error.
/// load_save_system.pipe(system_adapter::unwrap)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may fail irreparably.
/// fn load_save_system() -> Result<(), std::io::Error> {
/// let save_file = open_file("my_save.json")?;
/// dbg!(save_file);
/// Ok(())
/// }
/// # fn open_file(name: &str) -> Result<&'static str, std::io::Error>
/// # { Ok("hello world") }
/// ```
pub fn unwrap<T, E: Debug>(In(res): In<Result<T, E>>) -> T {
res.unwrap()
}
/// System adapter that ignores the output of the previous system in a pipe.
/// This is useful for fallible systems that should simply return early in case of an `Err`/`None`.
///
/// # Examples
///
/// Returning early
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// // Marker component for an enemy entity.
/// #[derive(Component)]
/// struct Monster;
/// #
/// # #[derive(StageLabel)]
/// # enum CoreStage { Update };
///
/// // Building a new schedule/app...
/// # use bevy_ecs::schedule::SystemStage;
/// # let mut sched = Schedule::default(); sched
/// # .add_stage(CoreStage::Update, SystemStage::single_threaded())
/// .add_system_to_stage(
/// CoreStage::Update,
/// // If the system fails, just move on and try again next frame.
/// fallible_system.pipe(system_adapter::ignore)
/// )
/// // ...
/// # ;
/// # let mut world = World::new();
/// # sched.run(&mut world);
///
/// // A system which may return early. It's more convenient to use the `?` operator for this.
/// fn fallible_system(
/// q: Query<Entity, With<Monster>>
/// ) -> Option<()> {
/// let monster_id = q.iter().next()?;
/// println!("Monster entity is {monster_id:?}");
/// Some(())
/// }
/// ```
pub fn ignore<T>(In(_): In<T>) {}
#[cfg(test)]
#[test]
fn assert_systems() {
use std::str::FromStr;
use crate::{prelude::*, system::assert_is_system};
/// Mocks a system that returns a value of type `T`.
fn returning<T>() -> T {
unimplemented!()
}
assert_is_system(returning::<Result<u32, std::io::Error>>.pipe(unwrap));
assert_is_system(returning::<Option<()>>.pipe(ignore));
assert_is_system(returning::<&str>.pipe(new(u64::from_str)).pipe(unwrap));
}
}