bevy/crates/bevy_pbr/src/render/pbr_functions.wgsl
Robert Swain c4e791d628 bevy_pbr: Normalize skinned normals (#6543)
# Objective

- Make the many foxes not unnecessarily bright. Broken since #5666.
- Fixes #6528 

## Solution

- In #5666 normalisation of normals was moved from the fragment stage to the vertex stage. However, it was not added to the vertex stage for skinned normals. The many foxes are skinned and their skinned normals were not unit normals. which made them brighter. Normalising the skinned normals fixes this.

---

## Changelog

- Fixed: Non-unit length skinned normals are now normalized.
2022-11-11 03:31:57 +00:00

265 lines
9.6 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::pbr_functions
#ifdef TONEMAP_IN_SHADER
#import bevy_core_pipeline::tonemapping
#endif
fn alpha_discard(material: StandardMaterial, output_color: vec4<f32>) -> vec4<f32>{
var color = output_color;
if ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE) != 0u) {
// NOTE: If rendering as opaque, alpha should be ignored so set to 1.0
color.a = 1.0;
} else if ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK) != 0u) {
if (color.a >= material.alpha_cutoff) {
// NOTE: If rendering as masked alpha and >= the cutoff, render as fully opaque
color.a = 1.0;
} else {
// NOTE: output_color.a < in.material.alpha_cutoff should not is not rendered
// NOTE: This and any other discards mean that early-z testing cannot be done!
discard;
}
}
return color;
}
fn prepare_world_normal(
world_normal: vec3<f32>,
double_sided: bool,
is_front: bool,
) -> vec3<f32> {
var output: vec3<f32> = world_normal;
#ifndef VERTEX_TANGENTS
#ifndef STANDARDMATERIAL_NORMAL_MAP
// NOTE: When NOT using normal-mapping, if looking at the back face of a double-sided
// material, the normal needs to be inverted. This is a branchless version of that.
output = (f32(!double_sided || is_front) * 2.0 - 1.0) * output;
#endif
#endif
return output;
}
fn apply_normal_mapping(
standard_material_flags: u32,
world_normal: vec3<f32>,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
world_tangent: vec4<f32>,
#endif
#endif
#ifdef VERTEX_UVS
uv: vec2<f32>,
#endif
) -> vec3<f32> {
// NOTE: The mikktspace method of normal mapping explicitly requires that the world normal NOT
// be re-normalized in the fragment shader. This is primarily to match the way mikktspace
// bakes vertex tangents and normal maps so that this is the exact inverse. Blender, Unity,
// Unreal Engine, Godot, and more all use the mikktspace method. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
var N: vec3<f32> = world_normal;
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
// NOTE: The mikktspace method of normal mapping explicitly requires that these NOT be
// normalized nor any Gram-Schmidt applied to ensure the vertex normal is orthogonal to the
// vertex tangent! Do not change this code unless you really know what you are doing.
// http://www.mikktspace.com/
var T: vec3<f32> = world_tangent.xyz;
var B: vec3<f32> = world_tangent.w * cross(N, T);
#endif
#endif
#ifdef VERTEX_TANGENTS
#ifdef VERTEX_UVS
#ifdef STANDARDMATERIAL_NORMAL_MAP
// Nt is the tangent-space normal.
var Nt = textureSample(normal_map_texture, normal_map_sampler, uv).rgb;
if ((standard_material_flags & STANDARD_MATERIAL_FLAGS_TWO_COMPONENT_NORMAL_MAP) != 0u) {
// Only use the xy components and derive z for 2-component normal maps.
Nt = vec3<f32>(Nt.rg * 2.0 - 1.0, 0.0);
Nt.z = sqrt(1.0 - Nt.x * Nt.x - Nt.y * Nt.y);
} else {
Nt = Nt * 2.0 - 1.0;
}
// Normal maps authored for DirectX require flipping the y component
if ((standard_material_flags & STANDARD_MATERIAL_FLAGS_FLIP_NORMAL_MAP_Y) != 0u) {
Nt.y = -Nt.y;
}
// NOTE: The mikktspace method of normal mapping applies maps the tangent-space normal from
// the normal map texture in this way to be an EXACT inverse of how the normal map baker
// calculates the normal maps so there is no error introduced. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
N = Nt.x * T + Nt.y * B + Nt.z * N;
#endif
#endif
#endif
return normalize(N);
}
// NOTE: Correctly calculates the view vector depending on whether
// the projection is orthographic or perspective.
fn calculate_view(
world_position: vec4<f32>,
is_orthographic: bool,
) -> vec3<f32> {
var V: vec3<f32>;
if (is_orthographic) {
// Orthographic view vector
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
} else {
// Only valid for a perpective projection
V = normalize(view.world_position.xyz - world_position.xyz);
}
return V;
}
struct PbrInput {
material: StandardMaterial,
occlusion: f32,
frag_coord: vec4<f32>,
world_position: vec4<f32>,
// Normalized world normal used for shadow mapping as normal-mapping is not used for shadow
// mapping
world_normal: vec3<f32>,
// Normalized normal-mapped world normal used for lighting
N: vec3<f32>,
// Normalized view vector in world space, pointing from the fragment world position toward the
// view world position
V: vec3<f32>,
is_orthographic: bool,
};
// Creates a PbrInput with default values
fn pbr_input_new() -> PbrInput {
var pbr_input: PbrInput;
pbr_input.material = standard_material_new();
pbr_input.occlusion = 1.0;
pbr_input.frag_coord = vec4<f32>(0.0, 0.0, 0.0, 1.0);
pbr_input.world_position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
pbr_input.world_normal = vec3<f32>(0.0, 0.0, 1.0);
pbr_input.is_orthographic = false;
pbr_input.N = vec3<f32>(0.0, 0.0, 1.0);
pbr_input.V = vec3<f32>(1.0, 0.0, 0.0);
return pbr_input;
}
fn pbr(
in: PbrInput,
) -> vec4<f32> {
var output_color: vec4<f32> = in.material.base_color;
// TODO use .a for exposure compensation in HDR
let emissive = in.material.emissive;
// calculate non-linear roughness from linear perceptualRoughness
let metallic = in.material.metallic;
let perceptual_roughness = in.material.perceptual_roughness;
let roughness = perceptualRoughnessToRoughness(perceptual_roughness);
let occlusion = in.occlusion;
output_color = alpha_discard(in.material, output_color);
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
let NdotV = max(dot(in.N, in.V), 0.0001);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
let reflectance = in.material.reflectance;
let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
let diffuse_color = output_color.rgb * (1.0 - metallic);
let R = reflect(-in.V, in.N);
// accumulate color
var light_accum: vec3<f32> = vec3<f32>(0.0);
let view_z = dot(vec4<f32>(
view.inverse_view[0].z,
view.inverse_view[1].z,
view.inverse_view[2].z,
view.inverse_view[3].z
), in.world_position);
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z, in.is_orthographic);
let offset_and_counts = unpack_offset_and_counts(cluster_index);
// point lights
for (var i: u32 = offset_and_counts[0]; i < offset_and_counts[0] + offset_and_counts[1]; i = i + 1u) {
let light_id = get_light_id(i);
let light = point_lights.data[light_id];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_point_shadow(light_id, in.world_position, in.world_normal);
}
let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
// spot lights
for (var i: u32 = offset_and_counts[0] + offset_and_counts[1]; i < offset_and_counts[0] + offset_and_counts[1] + offset_and_counts[2]; i = i + 1u) {
let light_id = get_light_id(i);
let light = point_lights.data[light_id];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_spot_shadow(light_id, in.world_position, in.world_normal);
}
let light_contrib = spot_light(in.world_position.xyz, light, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let n_directional_lights = lights.n_directional_lights;
for (var i: u32 = 0u; i < n_directional_lights; i = i + 1u) {
let light = lights.directional_lights[i];
var shadow: f32 = 1.0;
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
&& (light.flags & DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
}
let light_contrib = directional_light(light, roughness, NdotV, in.N, in.V, R, F0, diffuse_color);
light_accum = light_accum + light_contrib * shadow;
}
let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV);
let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color = vec4<f32>(
light_accum +
(diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion +
emissive.rgb * output_color.a,
output_color.a);
output_color = cluster_debug_visualization(
output_color,
view_z,
in.is_orthographic,
offset_and_counts,
cluster_index,
);
return output_color;
}
#ifdef TONEMAP_IN_SHADER
fn tone_mapping(in: vec4<f32>) -> vec4<f32> {
// tone_mapping
return vec4<f32>(reinhard_luminance(in.rgb), in.a);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
}
#endif