
This PR adds support for *mixed lighting* to Bevy, whereby some parts of the scene are lightmapped, while others take part in real-time lighting. (Here *real-time lighting* means lighting at runtime via the PBR shader, as opposed to precomputed light using lightmaps.) It does so by adding a new field, `affects_lightmapped_meshes` to `IrradianceVolume` and `AmbientLight`, and a corresponding field `affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`, `SpotLight`, and `EnvironmentMapLight`. By default, this value is set to true; when set to false, the light contributes nothing to the diffuse irradiance component to meshes with lightmaps. Note that specular light is unaffected. This is because the correct way to bake specular lighting is *directional lightmaps*, which we have no support for yet. There are two general ways I expect this field to be used: 1. When diffuse indirect light is baked into lightmaps, irradiance volumes and reflection probes shouldn't contribute any diffuse light to the static geometry that has a lightmap. That's because the baking tool should have already accounted for it, and in a higher-quality fashion, as lightmaps typically offer a higher effective texture resolution than the light probe does. 2. When direct diffuse light is baked into a lightmap, punctual lights shouldn't contribute any diffuse light to static geometry with a lightmap, to avoid double-counting. It may seem odd to bake *direct* light into a lightmap, as opposed to indirect light. But there is a use case: in a scene with many lights, avoiding light leaks requires shadow mapping, which quickly becomes prohibitive when many lights are involved. Baking lightmaps allows light leaks to be eliminated on static geometry. A new example, `mixed_lighting`, has been added. It demonstrates a sofa (model from the [glTF Sample Assets]) that has been lightmapped offline using [Bakery]. It has four modes: 1. In *baked* mode, all objects are locked in place, and all the diffuse direct and indirect light has been calculated ahead of time. Note that the bottom of the sphere has a red tint from the sofa, illustrating that the baking tool captured indirect light for it. 2. In *mixed direct* mode, lightmaps capturing diffuse direct and indirect light have been pre-calculated for the static objects, but the dynamic sphere has real-time lighting. Note that, because the diffuse lighting has been entirely pre-calculated for the scenery, the dynamic sphere casts no shadow. In a real app, you would typically use real-time lighting for the most important light so that dynamic objects can shadow the scenery and relegate baked lighting to the less important lights for which shadows aren't as important. Also note that there is no red tint on the sphere, because there is no global illumination applied to it. In an actual game, you could fix this problem by supplementing the lightmapped objects with an irradiance volume. 3. In *mixed indirect* mode, all direct light is calculated in real-time, and the static objects have pre-calculated indirect lighting. This corresponds to the mode that most applications are expected to use. Because direct light on the scenery is computed dynamically, shadows are fully supported. As in mixed direct mode, there is no global illumination on the sphere; in a real application, irradiance volumes could be used to supplement the lightmaps. 4. In *real-time* mode, no lightmaps are used at all, and all punctual lights are rendered in real-time. No global illumination exists. In the example, you can click around to move the sphere, unless you're in baked mode, in which case the sphere must be locked in place to be lit correctly. ## Showcase Baked mode:  Mixed direct mode:  Mixed indirect mode (default):  Real-time mode:  ## Migration guide * The `AmbientLight` resource, the `IrradianceVolume` component, and the `EnvironmentMapLight` component now have `affects_lightmapped_meshes` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. * `DirectionalLight`, `PointLight`, and `SpotLight` now have `affects_lightmapped_mesh_diffuse` fields. If you don't need to use that field (for example, if you aren't using lightmaps), you can safely set the field to true. [glTF Sample Assets]: https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main [Bakery]: https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
186 lines
6.8 KiB
Rust
186 lines
6.8 KiB
Rust
//! Create and play an animation defined by code that operates on the [`Transform`] component.
|
|
|
|
use std::f32::consts::PI;
|
|
|
|
use bevy::{
|
|
animation::{animated_field, AnimationTarget, AnimationTargetId},
|
|
prelude::*,
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.insert_resource(AmbientLight {
|
|
color: Color::WHITE,
|
|
brightness: 150.0,
|
|
..default()
|
|
})
|
|
.add_systems(Startup, setup)
|
|
.run();
|
|
}
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
mut animations: ResMut<Assets<AnimationClip>>,
|
|
mut graphs: ResMut<Assets<AnimationGraph>>,
|
|
) {
|
|
// Camera
|
|
commands.spawn((
|
|
Camera3d::default(),
|
|
Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
));
|
|
|
|
// Light
|
|
commands.spawn((
|
|
PointLight {
|
|
intensity: 500_000.0,
|
|
..default()
|
|
},
|
|
Transform::from_xyz(0.0, 2.5, 0.0),
|
|
));
|
|
|
|
// Let's use the `Name` component to target entities. We can use anything we
|
|
// like, but names are convenient.
|
|
let planet = Name::new("planet");
|
|
let orbit_controller = Name::new("orbit_controller");
|
|
let satellite = Name::new("satellite");
|
|
|
|
// Creating the animation
|
|
let mut animation = AnimationClip::default();
|
|
// A curve can modify a single part of a transform: here, the translation.
|
|
let planet_animation_target_id = AnimationTargetId::from_name(&planet);
|
|
animation.add_curve_to_target(
|
|
planet_animation_target_id,
|
|
AnimatableCurve::new(
|
|
animated_field!(Transform::translation),
|
|
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
|
|
Vec3::new(1.0, 0.0, 1.0),
|
|
Vec3::new(-1.0, 0.0, 1.0),
|
|
Vec3::new(-1.0, 0.0, -1.0),
|
|
Vec3::new(1.0, 0.0, -1.0),
|
|
// in case seamless looping is wanted, the last keyframe should
|
|
// be the same as the first one
|
|
Vec3::new(1.0, 0.0, 1.0),
|
|
]))
|
|
.expect("should be able to build translation curve because we pass in valid samples"),
|
|
),
|
|
);
|
|
// Or it can modify the rotation of the transform.
|
|
// To find the entity to modify, the hierarchy will be traversed looking for
|
|
// an entity with the right name at each level.
|
|
let orbit_controller_animation_target_id =
|
|
AnimationTargetId::from_names([planet.clone(), orbit_controller.clone()].iter());
|
|
animation.add_curve_to_target(
|
|
orbit_controller_animation_target_id,
|
|
AnimatableCurve::new(
|
|
animated_field!(Transform::rotation),
|
|
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
|
|
Quat::IDENTITY,
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2.),
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
|
|
Quat::IDENTITY,
|
|
]))
|
|
.expect("Failed to build rotation curve"),
|
|
),
|
|
);
|
|
// If a curve in an animation is shorter than the other, it will not repeat
|
|
// until all other curves are finished. In that case, another animation should
|
|
// be created for each part that would have a different duration / period.
|
|
let satellite_animation_target_id = AnimationTargetId::from_names(
|
|
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
|
|
);
|
|
animation.add_curve_to_target(
|
|
satellite_animation_target_id,
|
|
AnimatableCurve::new(
|
|
animated_field!(Transform::scale),
|
|
UnevenSampleAutoCurve::new(
|
|
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
|
|
.into_iter()
|
|
.zip([
|
|
Vec3::splat(0.8),
|
|
Vec3::splat(1.2),
|
|
Vec3::splat(0.8),
|
|
Vec3::splat(1.2),
|
|
Vec3::splat(0.8),
|
|
Vec3::splat(1.2),
|
|
Vec3::splat(0.8),
|
|
Vec3::splat(1.2),
|
|
Vec3::splat(0.8),
|
|
]),
|
|
)
|
|
.expect("Failed to build scale curve"),
|
|
),
|
|
);
|
|
// There can be more than one curve targeting the same entity path.
|
|
animation.add_curve_to_target(
|
|
AnimationTargetId::from_names(
|
|
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
|
|
),
|
|
AnimatableCurve::new(
|
|
animated_field!(Transform::rotation),
|
|
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
|
|
Quat::IDENTITY,
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2.),
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
|
|
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
|
|
Quat::IDENTITY,
|
|
]))
|
|
.expect("should be able to build translation curve because we pass in valid samples"),
|
|
),
|
|
);
|
|
|
|
// Create the animation graph
|
|
let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
|
|
|
|
// Create the animation player, and set it to repeat
|
|
let mut player = AnimationPlayer::default();
|
|
player.play(animation_index).repeat();
|
|
|
|
// Create the scene that will be animated
|
|
// First entity is the planet
|
|
let planet_entity = commands
|
|
.spawn((
|
|
Mesh3d(meshes.add(Sphere::default())),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
|
|
// Add the animation graph and player
|
|
planet,
|
|
AnimationGraphHandle(graphs.add(graph)),
|
|
player,
|
|
))
|
|
.id();
|
|
commands
|
|
.entity(planet_entity)
|
|
.insert(AnimationTarget {
|
|
id: planet_animation_target_id,
|
|
player: planet_entity,
|
|
})
|
|
.with_children(|p| {
|
|
// This entity is just used for animation, but doesn't display anything
|
|
p.spawn((
|
|
Transform::default(),
|
|
Visibility::default(),
|
|
orbit_controller,
|
|
AnimationTarget {
|
|
id: orbit_controller_animation_target_id,
|
|
player: planet_entity,
|
|
},
|
|
))
|
|
.with_children(|p| {
|
|
// The satellite, placed at a distance of the planet
|
|
p.spawn((
|
|
Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
|
|
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.9, 0.3))),
|
|
Transform::from_xyz(1.5, 0.0, 0.0),
|
|
AnimationTarget {
|
|
id: satellite_animation_target_id,
|
|
player: planet_entity,
|
|
},
|
|
satellite,
|
|
));
|
|
});
|
|
});
|
|
}
|