903 lines
34 KiB
Rust
903 lines
34 KiB
Rust
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
|
|
|
//! This crate contains macros used by Bevy's `Reflect` API.
|
|
//!
|
|
//! The main export of this crate is the derive macro for [`Reflect`]. This allows
|
|
//! types to easily implement `Reflect` along with other `bevy_reflect` traits,
|
|
//! such as `Struct`, `GetTypeRegistration`, and more— all with a single derive!
|
|
//!
|
|
//! Some other noteworthy exports include the derive macros for [`FromReflect`] and
|
|
//! [`TypePath`], as well as the [`reflect_trait`] attribute macro.
|
|
//!
|
|
//! [`Reflect`]: crate::derive_reflect
|
|
//! [`FromReflect`]: crate::derive_from_reflect
|
|
//! [`TypePath`]: crate::derive_type_path
|
|
//! [`reflect_trait`]: macro@reflect_trait
|
|
|
|
extern crate proc_macro;
|
|
|
|
mod attribute_parser;
|
|
mod container_attributes;
|
|
mod custom_attributes;
|
|
mod derive_data;
|
|
#[cfg(feature = "documentation")]
|
|
mod documentation;
|
|
mod enum_utility;
|
|
mod field_attributes;
|
|
mod from_reflect;
|
|
mod generics;
|
|
mod ident;
|
|
mod impls;
|
|
mod meta;
|
|
mod reflect_opaque;
|
|
mod registration;
|
|
mod remote;
|
|
mod result_sifter;
|
|
mod serialization;
|
|
mod string_expr;
|
|
mod struct_utility;
|
|
mod trait_reflection;
|
|
mod type_path;
|
|
mod where_clause_options;
|
|
|
|
use std::{fs, io::Read, path::PathBuf};
|
|
|
|
use crate::derive_data::{ReflectDerive, ReflectMeta, ReflectStruct};
|
|
use container_attributes::ContainerAttributes;
|
|
use derive_data::{ReflectImplSource, ReflectProvenance, ReflectTraitToImpl, ReflectTypePath};
|
|
use proc_macro::TokenStream;
|
|
use quote::quote;
|
|
use reflect_opaque::ReflectOpaqueDef;
|
|
use syn::{parse_macro_input, DeriveInput};
|
|
use type_path::NamedTypePathDef;
|
|
|
|
pub(crate) static REFLECT_ATTRIBUTE_NAME: &str = "reflect";
|
|
pub(crate) static TYPE_PATH_ATTRIBUTE_NAME: &str = "type_path";
|
|
pub(crate) static TYPE_NAME_ATTRIBUTE_NAME: &str = "type_name";
|
|
|
|
/// Used both for [`impl_reflect`] and [`derive_reflect`].
|
|
///
|
|
/// [`impl_reflect`]: macro@impl_reflect
|
|
/// [`derive_reflect`]: derive_reflect()
|
|
fn match_reflect_impls(ast: DeriveInput, source: ReflectImplSource) -> TokenStream {
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source,
|
|
trait_: ReflectTraitToImpl::Reflect,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let assertions = impls::impl_assertions(&derive_data);
|
|
|
|
let (reflect_impls, from_reflect_impl) = match derive_data {
|
|
ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => (
|
|
impls::impl_struct(&struct_data),
|
|
if struct_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_struct(&struct_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::TupleStruct(struct_data) => (
|
|
impls::impl_tuple_struct(&struct_data),
|
|
if struct_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_tuple_struct(&struct_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::Enum(enum_data) => (
|
|
impls::impl_enum(&enum_data),
|
|
if enum_data.meta().from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_enum(&enum_data))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
ReflectDerive::Opaque(meta) => (
|
|
impls::impl_opaque(&meta),
|
|
if meta.from_reflect().should_auto_derive() {
|
|
Some(from_reflect::impl_opaque(&meta))
|
|
} else {
|
|
None
|
|
},
|
|
),
|
|
};
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#reflect_impls
|
|
|
|
#from_reflect_impl
|
|
|
|
#assertions
|
|
};
|
|
})
|
|
}
|
|
|
|
/// The main derive macro used by `bevy_reflect` for deriving its `Reflect` trait.
|
|
///
|
|
/// This macro can be used on all structs and enums (unions are not supported).
|
|
/// It will automatically generate implementations for `Reflect`, `Typed`, `GetTypeRegistration`, and `FromReflect`.
|
|
/// And, depending on the item's structure, will either implement `Struct`, `TupleStruct`, or `Enum`.
|
|
///
|
|
/// See the [`FromReflect`] derive macro for more information on how to customize the `FromReflect` implementation.
|
|
///
|
|
/// # Container Attributes
|
|
///
|
|
/// This macro comes with some helper attributes that can be added to the container item
|
|
/// in order to provide additional functionality or alter the generated implementations.
|
|
///
|
|
/// In addition to those listed, this macro can also use the attributes for [`TypePath`] derives.
|
|
///
|
|
/// ## `#[reflect(Ident)]`
|
|
///
|
|
/// The `#[reflect(Ident)]` attribute is used to add type data registrations to the `GetTypeRegistration`
|
|
/// implementation corresponding to the given identifier, prepended by `Reflect`.
|
|
///
|
|
/// For example, `#[reflect(Foo, Bar)]` would add two registrations:
|
|
/// one for `ReflectFoo` and another for `ReflectBar`.
|
|
/// This assumes these types are indeed in-scope wherever this macro is called.
|
|
///
|
|
/// This is often used with traits that have been marked by the [`#[reflect_trait]`](macro@reflect_trait)
|
|
/// macro in order to register the type's implementation of that trait.
|
|
///
|
|
/// ### Default Registrations
|
|
///
|
|
/// The following types are automatically registered when deriving `Reflect`:
|
|
///
|
|
/// * `ReflectFromReflect` (unless opting out of `FromReflect`)
|
|
/// * `SerializationData`
|
|
/// * `ReflectFromPtr`
|
|
///
|
|
/// ### Special Identifiers
|
|
///
|
|
/// There are a few "special" identifiers that work a bit differently:
|
|
///
|
|
/// * `#[reflect(Clone)]` will force the implementation of `Reflect::reflect_clone` to rely on
|
|
/// the type's [`Clone`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Clone(my_clone_func))]` where
|
|
/// `my_clone_func` is the path to a function matching the signature:
|
|
/// `(&Self) -> Self`.
|
|
/// * `#[reflect(Debug)]` will force the implementation of `Reflect::reflect_debug` to rely on
|
|
/// the type's [`Debug`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Debug(my_debug_func))]` where
|
|
/// `my_debug_func` is the path to a function matching the signature:
|
|
/// `(&Self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result`.
|
|
/// * `#[reflect(PartialEq)]` will force the implementation of `Reflect::reflect_partial_eq` to rely on
|
|
/// the type's [`PartialEq`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(PartialEq(my_partial_eq_func))]` where
|
|
/// `my_partial_eq_func` is the path to a function matching the signature:
|
|
/// `(&Self, value: &dyn #bevy_reflect_path::Reflect) -> bool`.
|
|
/// * `#[reflect(Hash)]` will force the implementation of `Reflect::reflect_hash` to rely on
|
|
/// the type's [`Hash`] implementation.
|
|
/// A custom implementation may be provided using `#[reflect(Hash(my_hash_func))]` where
|
|
/// `my_hash_func` is the path to a function matching the signature: `(&Self) -> u64`.
|
|
/// * `#[reflect(Default)]` will register the `ReflectDefault` type data as normal.
|
|
/// However, it will also affect how certain other operations are performed in order
|
|
/// to improve performance and/or robustness.
|
|
/// An example of where this is used is in the [`FromReflect`] derive macro,
|
|
/// where adding this attribute will cause the `FromReflect` implementation to create
|
|
/// a base value using its [`Default`] implementation avoiding issues with ignored fields
|
|
/// (for structs and tuple structs only).
|
|
///
|
|
/// ## `#[reflect(opaque)]`
|
|
///
|
|
/// The `#[reflect(opaque)]` attribute denotes that the item should implement `Reflect` as an opaque type,
|
|
/// hiding its structure and fields from the reflection API.
|
|
/// This means that it will forgo implementing `Struct`, `TupleStruct`, or `Enum`.
|
|
///
|
|
/// Furthermore, it requires that the type implements [`Clone`].
|
|
/// If planning to serialize this type using the reflection serializers,
|
|
/// then the `Serialize` and `Deserialize` traits will need to be implemented and registered as well.
|
|
///
|
|
/// ## `#[reflect(from_reflect = false)]`
|
|
///
|
|
/// This attribute will opt-out of the default `FromReflect` implementation.
|
|
///
|
|
/// This is useful for when a type can't or shouldn't implement `FromReflect`,
|
|
/// or if a manual implementation is desired.
|
|
///
|
|
/// Note that in the latter case, `ReflectFromReflect` will no longer be automatically registered.
|
|
///
|
|
/// ## `#[reflect(type_path = false)]`
|
|
///
|
|
/// This attribute will opt-out of the default `TypePath` implementation.
|
|
///
|
|
/// This is useful for when a type can't or shouldn't implement `TypePath`,
|
|
/// or if a manual implementation is desired.
|
|
///
|
|
/// ## `#[reflect(no_field_bounds)]`
|
|
///
|
|
/// This attribute will opt-out of the default trait bounds added to all field types
|
|
/// for the generated reflection trait impls.
|
|
///
|
|
/// Normally, all fields will have the bounds `TypePath`, and either `FromReflect` or `Reflect`
|
|
/// depending on if `#[reflect(from_reflect = false)]` is used.
|
|
/// However, this might not always be desirable, and so this attribute may be used to remove those bounds.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// If a type is recursive the default bounds will cause an overflow error when building:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// #[derive(Reflect)] // ERROR: overflow evaluating the requirement `Foo: FromReflect`
|
|
/// struct Foo {
|
|
/// foo: Vec<Foo>,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// // impl bevy_reflect::Reflect for Foo
|
|
/// // where
|
|
/// // Foo: Any + Send + Sync,
|
|
/// // Vec<Foo>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
|
|
/// ```
|
|
///
|
|
/// In this case, `Foo` is given the bounds `Vec<Foo>: FromReflect + ...`,
|
|
/// which requires that `Foo` implements `FromReflect`,
|
|
/// which requires that `Vec<Foo>` implements `FromReflect`,
|
|
/// and so on, resulting in the error.
|
|
///
|
|
/// To fix this, we can add `#[reflect(no_field_bounds)]` to `Foo` to remove the bounds on `Vec<Foo>`:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(no_field_bounds)]
|
|
/// struct Foo {
|
|
/// foo: Vec<Foo>,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// // impl bevy_reflect::Reflect for Foo
|
|
/// // where
|
|
/// // Self: Any + Send + Sync,
|
|
/// ```
|
|
///
|
|
/// ## `#[reflect(where T: Trait, U::Assoc: Trait, ...)]`
|
|
///
|
|
/// This attribute can be used to add additional bounds to the generated reflection trait impls.
|
|
///
|
|
/// This is useful for when a type needs certain bounds only applied to the reflection impls
|
|
/// that are not otherwise automatically added by the derive macro.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// In the example below, we want to enforce that `T::Assoc: List` is required in order for
|
|
/// `Foo<T>` to be reflectable, but we don't want it to prevent `Foo<T>` from being used
|
|
/// in places where `T::Assoc: List` is not required.
|
|
///
|
|
/// ```ignore
|
|
/// trait Trait {
|
|
/// type Assoc;
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(where T::Assoc: List)]
|
|
/// struct Foo<T: Trait> where T::Assoc: Default {
|
|
/// value: T::Assoc,
|
|
/// }
|
|
///
|
|
/// // Generates a where clause like:
|
|
/// //
|
|
/// // impl<T: Trait> bevy_reflect::Reflect for Foo<T>
|
|
/// // where
|
|
/// // Foo<T>: Any + Send + Sync,
|
|
/// // T::Assoc: Default,
|
|
/// // T: TypePath,
|
|
/// // T::Assoc: FromReflect + TypePath + MaybeTyped + RegisterForReflection,
|
|
/// // T::Assoc: List,
|
|
/// // {/* ... */}
|
|
/// ```
|
|
///
|
|
/// ## `#[reflect(@...)]`
|
|
///
|
|
/// This attribute can be used to register custom attributes to the type's `TypeInfo`.
|
|
///
|
|
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
|
|
///
|
|
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
|
|
/// If two attributes of the same type are registered, the last one will overwrite the first.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct Required;
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct EditorTooltip(String);
|
|
///
|
|
/// impl EditorTooltip {
|
|
/// fn new(text: &str) -> Self {
|
|
/// Self(text.to_string())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// // Specify a "required" status and tooltip:
|
|
/// #[reflect(@Required, @EditorTooltip::new("An ID is required!"))]
|
|
/// struct Id(u8);
|
|
/// ```
|
|
/// ## `#[reflect(no_auto_register)]`
|
|
///
|
|
/// This attribute will opt-out of the automatic reflect type registration.
|
|
///
|
|
/// All non-generic types annotated with `#[derive(Reflect)]` are usually automatically registered on app startup.
|
|
/// If this behavior is not desired, this attribute may be used to disable it for the annotated type.
|
|
///
|
|
/// # Field Attributes
|
|
///
|
|
/// Along with the container attributes, this macro comes with some attributes that may be applied
|
|
/// to the contained fields themselves.
|
|
///
|
|
/// ## `#[reflect(ignore)]`
|
|
///
|
|
/// This attribute simply marks a field to be ignored by the reflection API.
|
|
///
|
|
/// This allows fields to completely opt-out of reflection,
|
|
/// which may be useful for maintaining invariants, keeping certain data private,
|
|
/// or allowing the use of types that do not implement `Reflect` within the container.
|
|
///
|
|
/// ## `#[reflect(skip_serializing)]`
|
|
///
|
|
/// This works similar to `#[reflect(ignore)]`, but rather than opting out of _all_ of reflection,
|
|
/// it simply opts the field out of both serialization and deserialization.
|
|
/// This can be useful when a field should be accessible via reflection, but may not make
|
|
/// sense in a serialized form, such as computed data.
|
|
///
|
|
/// What this does is register the `SerializationData` type within the `GetTypeRegistration` implementation,
|
|
/// which will be used by the reflection serializers to determine whether or not the field is serializable.
|
|
///
|
|
/// ## `#[reflect(clone)]`
|
|
///
|
|
/// This attribute affects the `Reflect::reflect_clone` implementation.
|
|
///
|
|
/// Without this attribute, the implementation will rely on the field's own `Reflect::reflect_clone` implementation.
|
|
/// When this attribute is present, the implementation will instead use the field's `Clone` implementation directly.
|
|
///
|
|
/// The attribute may also take the path to a custom function like `#[reflect(clone = "path::to::my_clone_func")]`,
|
|
/// where `my_clone_func` matches the signature `(&Self) -> Self`.
|
|
///
|
|
/// This attribute does nothing if the containing struct/enum has the `#[reflect(Clone)]` attribute.
|
|
///
|
|
/// ## `#[reflect(@...)]`
|
|
///
|
|
/// This attribute can be used to register custom attributes to the field's `TypeInfo`.
|
|
///
|
|
/// It accepts any expression after the `@` symbol that resolves to a value which implements `Reflect`.
|
|
///
|
|
/// Any number of custom attributes may be registered, however, each the type of each attribute must be unique.
|
|
/// If two attributes of the same type are registered, the last one will overwrite the first.
|
|
///
|
|
/// ### Example
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct EditorTooltip(String);
|
|
///
|
|
/// impl EditorTooltip {
|
|
/// fn new(text: &str) -> Self {
|
|
/// Self(text.to_string())
|
|
/// }
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// struct Slider {
|
|
/// // Specify a custom range and tooltip:
|
|
/// #[reflect(@0.0..=1.0, @EditorTooltip::new("Must be between 0 and 1"))]
|
|
/// value: f32,
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// [`reflect_trait`]: macro@reflect_trait
|
|
#[proc_macro_derive(Reflect, attributes(reflect, type_path, type_name))]
|
|
pub fn derive_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
match_reflect_impls(ast, ReflectImplSource::DeriveLocalType)
|
|
}
|
|
|
|
/// Derives the `FromReflect` trait.
|
|
///
|
|
/// # Field Attributes
|
|
///
|
|
/// ## `#[reflect(ignore)]`
|
|
///
|
|
/// The `#[reflect(ignore)]` attribute is shared with the [`#[derive(Reflect)]`](Reflect) macro and has much of the same
|
|
/// functionality in that it denotes that a field will be ignored by the reflection API.
|
|
///
|
|
/// The only major difference is that using it with this derive requires that the field implements [`Default`].
|
|
/// Without this requirement, there would be no way for `FromReflect` to automatically construct missing fields
|
|
/// that have been ignored.
|
|
///
|
|
/// ## `#[reflect(default)]`
|
|
///
|
|
/// If a field cannot be read, this attribute specifies a default value to be used in its place.
|
|
///
|
|
/// By default, this attribute denotes that the field's type implements [`Default`].
|
|
/// However, it can also take in a path string to a user-defined function that will return the default value.
|
|
/// This takes the form: `#[reflect(default = "path::to::my_function")]` where `my_function` is a parameterless
|
|
/// function that must return some default value for the type.
|
|
///
|
|
/// Specifying a custom default can be used to give different fields their own specialized defaults,
|
|
/// or to remove the `Default` requirement on fields marked with `#[reflect(ignore)]`.
|
|
/// Additionally, either form of this attribute can be used to fill in fields that are simply missing,
|
|
/// such as when converting a partially-constructed dynamic type to a concrete one.
|
|
#[proc_macro_derive(FromReflect, attributes(reflect))]
|
|
pub fn derive_from_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source: ReflectImplSource::DeriveLocalType,
|
|
trait_: ReflectTraitToImpl::FromReflect,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let from_reflect_impl = match derive_data {
|
|
ReflectDerive::Struct(struct_data) | ReflectDerive::UnitStruct(struct_data) => {
|
|
from_reflect::impl_struct(&struct_data)
|
|
}
|
|
ReflectDerive::TupleStruct(struct_data) => from_reflect::impl_tuple_struct(&struct_data),
|
|
ReflectDerive::Enum(meta) => from_reflect::impl_enum(&meta),
|
|
ReflectDerive::Opaque(meta) => from_reflect::impl_opaque(&meta),
|
|
};
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// Derives the `TypePath` trait, providing a stable alternative to [`std::any::type_name`].
|
|
///
|
|
/// # Container Attributes
|
|
///
|
|
/// ## `#[type_path = "my_crate::foo"]`
|
|
///
|
|
/// Optionally specifies a custom module path to use instead of [`module_path`].
|
|
///
|
|
/// This path does not include the final identifier.
|
|
///
|
|
/// ## `#[type_name = "RenamedType"]`
|
|
///
|
|
/// Optionally specifies a new terminating identifier for `TypePath`.
|
|
///
|
|
/// To use this attribute, `#[type_path = "..."]` must also be specified.
|
|
#[proc_macro_derive(TypePath, attributes(type_path, type_name))]
|
|
pub fn derive_type_path(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
let derive_data = match ReflectDerive::from_input(
|
|
&ast,
|
|
ReflectProvenance {
|
|
source: ReflectImplSource::DeriveLocalType,
|
|
trait_: ReflectTraitToImpl::TypePath,
|
|
},
|
|
) {
|
|
Ok(data) => data,
|
|
Err(err) => return err.into_compile_error().into(),
|
|
};
|
|
|
|
let type_path_impl = impls::impl_type_path(derive_data.meta());
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#type_path_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A macro that automatically generates type data for traits, which their implementors can then register.
|
|
///
|
|
/// The output of this macro is a struct that takes reflected instances of the implementor's type
|
|
/// and returns the value as a trait object.
|
|
/// Because of this, **it can only be used on [object-safe] traits.**
|
|
///
|
|
/// For a trait named `MyTrait`, this will generate the struct `ReflectMyTrait`.
|
|
/// The generated struct can be created using `FromType` with any type that implements the trait.
|
|
/// The creation and registration of this generated struct as type data can be automatically handled
|
|
/// by [`#[derive(Reflect)]`](Reflect).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// # use std::any::TypeId;
|
|
/// # use bevy_reflect_derive::{Reflect, reflect_trait};
|
|
/// #[reflect_trait] // Generates `ReflectMyTrait`
|
|
/// trait MyTrait {
|
|
/// fn print(&self) -> &str;
|
|
/// }
|
|
///
|
|
/// #[derive(Reflect)]
|
|
/// #[reflect(MyTrait)] // Automatically registers `ReflectMyTrait`
|
|
/// struct SomeStruct;
|
|
///
|
|
/// impl MyTrait for SomeStruct {
|
|
/// fn print(&self) -> &str {
|
|
/// "Hello, World!"
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // We can create the type data manually if we wanted:
|
|
/// let my_trait: ReflectMyTrait = FromType::<SomeStruct>::from_type();
|
|
///
|
|
/// // Or we can simply get it from the registry:
|
|
/// let mut registry = TypeRegistry::default();
|
|
/// registry.register::<SomeStruct>();
|
|
/// let my_trait = registry
|
|
/// .get_type_data::<ReflectMyTrait>(TypeId::of::<SomeStruct>())
|
|
/// .unwrap();
|
|
///
|
|
/// // Then use it on reflected data
|
|
/// let reflected: Box<dyn Reflect> = Box::new(SomeStruct);
|
|
/// let reflected_my_trait: &dyn MyTrait = my_trait.get(&*reflected).unwrap();
|
|
/// assert_eq!("Hello, World!", reflected_my_trait.print());
|
|
/// ```
|
|
///
|
|
/// [object-safe]: https://doc.rust-lang.org/reference/items/traits.html#object-safety
|
|
#[proc_macro_attribute]
|
|
pub fn reflect_trait(args: TokenStream, input: TokenStream) -> TokenStream {
|
|
trait_reflection::reflect_trait(&args, input)
|
|
}
|
|
|
|
/// Generates a wrapper type that can be used to "derive `Reflect`" for remote types.
|
|
///
|
|
/// This works by wrapping the remote type in a generated wrapper that has the `#[repr(transparent)]` attribute.
|
|
/// This allows the two types to be safely [transmuted] back-and-forth.
|
|
///
|
|
/// # Defining the Wrapper
|
|
///
|
|
/// Before defining the wrapper type, please note that it is _required_ that all fields of the remote type are public.
|
|
/// The generated code will, at times, need to access or mutate them,
|
|
/// and we do not currently have a way to assign getters/setters to each field
|
|
/// (but this may change in the future).
|
|
///
|
|
/// The wrapper definition should match the remote type 1-to-1.
|
|
/// This includes the naming and ordering of the fields and variants.
|
|
///
|
|
/// Generics and lifetimes do _not_ need to have the same names, however, they _do_ need to follow the same order.
|
|
/// Additionally, whether generics are inlined or placed in a where clause should not matter.
|
|
///
|
|
/// Lastly, all macros and doc-comments should be placed __below__ this attribute.
|
|
/// If they are placed above, they will not be properly passed to the generated wrapper type.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Given a remote type, `RemoteType`:
|
|
///
|
|
/// ```
|
|
/// #[derive(Default)]
|
|
/// struct RemoteType<T>
|
|
/// where
|
|
/// T: Default + Clone,
|
|
/// {
|
|
/// pub foo: T,
|
|
/// pub bar: usize
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// We would define our wrapper type as such:
|
|
///
|
|
/// ```ignore
|
|
/// use external_crate::RemoteType;
|
|
///
|
|
/// #[reflect_remote(RemoteType<T>)]
|
|
/// #[derive(Default)]
|
|
/// pub struct WrapperType<T: Default + Clone> {
|
|
/// pub foo: T,
|
|
/// pub bar: usize
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Apart from all the reflection trait implementations, this generates something like the following:
|
|
///
|
|
/// ```ignore
|
|
/// use external_crate::RemoteType;
|
|
///
|
|
/// #[derive(Default)]
|
|
/// #[repr(transparent)]
|
|
/// pub struct Wrapper<T: Default + Clone>(RemoteType<T>);
|
|
/// ```
|
|
///
|
|
/// # Usage as a Field
|
|
///
|
|
/// You can tell `Reflect` to use a remote type's wrapper internally on fields of a struct or enum.
|
|
/// This allows the real type to be used as usual while `Reflect` handles everything internally.
|
|
/// To do this, add the `#[reflect(remote = path::to::MyType)]` attribute to your field:
|
|
///
|
|
/// ```ignore
|
|
/// #[derive(Reflect)]
|
|
/// struct SomeStruct {
|
|
/// #[reflect(remote = RemoteTypeWrapper)]
|
|
/// data: RemoteType
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// ## Safety
|
|
///
|
|
/// When using the `#[reflect(remote = path::to::MyType)]` field attribute, be sure you are defining the correct wrapper type.
|
|
/// Internally, this field will be unsafely [transmuted], and is only sound if using a wrapper generated for the remote type.
|
|
/// This also means keeping your wrapper definitions up-to-date with the remote types.
|
|
///
|
|
/// [transmuted]: std::mem::transmute
|
|
#[proc_macro_attribute]
|
|
pub fn reflect_remote(args: TokenStream, input: TokenStream) -> TokenStream {
|
|
remote::reflect_remote(args, input)
|
|
}
|
|
|
|
/// A macro used to generate reflection trait implementations for the given type.
|
|
///
|
|
/// This is functionally the same as [deriving `Reflect`] using the `#[reflect(opaque)]` container attribute.
|
|
///
|
|
/// The only reason for this macro's existence is so that `bevy_reflect` can easily implement the reflection traits
|
|
/// on primitives and other opaque types internally.
|
|
///
|
|
/// Since this macro also implements `TypePath`, the type path must be explicit.
|
|
/// See [`impl_type_path!`] for the exact syntax.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Types can be passed with or without registering type data:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!(my_crate::Foo);
|
|
/// impl_reflect_opaque!(my_crate::Bar(Debug, Default, Serialize, Deserialize));
|
|
/// ```
|
|
///
|
|
/// Generic types can also specify their parameters and bounds:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!(my_crate::Foo<T1, T2: Baz> where T1: Bar (Default, Serialize, Deserialize));
|
|
/// ```
|
|
///
|
|
/// Custom type paths can be specified:
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_reflect_opaque!((in not_my_crate as NotFoo) Foo(Debug, Default));
|
|
/// ```
|
|
///
|
|
/// [deriving `Reflect`]: Reflect
|
|
#[proc_macro]
|
|
pub fn impl_reflect_opaque(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input with ReflectOpaqueDef::parse_reflect);
|
|
|
|
let default_name = &def.type_path.segments.last().unwrap().ident;
|
|
let type_path = if def.type_path.leading_colon.is_none() && def.custom_path.is_none() {
|
|
ReflectTypePath::Primitive(default_name)
|
|
} else {
|
|
ReflectTypePath::External {
|
|
path: &def.type_path,
|
|
custom_path: def.custom_path.map(|path| path.into_path(default_name)),
|
|
generics: &def.generics,
|
|
}
|
|
};
|
|
|
|
let meta = ReflectMeta::new(type_path, def.traits.unwrap_or_default());
|
|
|
|
#[cfg(feature = "documentation")]
|
|
let meta = meta.with_docs(documentation::Documentation::from_attributes(&def.attrs));
|
|
|
|
let reflect_impls = impls::impl_opaque(&meta);
|
|
let from_reflect_impl = from_reflect::impl_opaque(&meta);
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#reflect_impls
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A replacement for `#[derive(Reflect)]` to be used with foreign types which
|
|
/// the definitions of cannot be altered.
|
|
///
|
|
/// This macro is an alternative to [`impl_reflect_opaque!`] and [`impl_from_reflect_opaque!`]
|
|
/// which implement foreign types as Opaque types. Note that there is no `impl_from_reflect`,
|
|
/// as this macro will do the job of both. This macro implements them using one of the reflect
|
|
/// variant traits (`bevy_reflect::{Struct, TupleStruct, Enum}`, etc.),
|
|
/// which have greater functionality. The type being reflected must be in scope, as you cannot
|
|
/// qualify it in the macro as e.g. `bevy::prelude::Vec3`.
|
|
///
|
|
/// It is necessary to add a `#[type_path = "my_crate::foo"]` attribute to all types.
|
|
///
|
|
/// It may be necessary to add `#[reflect(Default)]` for some types, specifically non-constructible
|
|
/// foreign types. Without `Default` reflected for such types, you will usually get an arcane
|
|
/// error message and fail to compile. If the type does not implement `Default`, it may not
|
|
/// be possible to reflect without extending the macro.
|
|
///
|
|
///
|
|
/// # Example
|
|
/// Implementing `Reflect` for `bevy::prelude::Vec3` as a struct type:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// use bevy::prelude::Vec3;
|
|
///
|
|
/// impl_reflect!(
|
|
/// #[reflect(PartialEq, Serialize, Deserialize, Default)]
|
|
/// #[type_path = "bevy::prelude"]
|
|
/// struct Vec3 {
|
|
/// x: f32,
|
|
/// y: f32,
|
|
/// z: f32
|
|
/// }
|
|
/// );
|
|
/// ```
|
|
#[proc_macro]
|
|
pub fn impl_reflect(input: TokenStream) -> TokenStream {
|
|
let ast = parse_macro_input!(input as DeriveInput);
|
|
match_reflect_impls(ast, ReflectImplSource::ImplRemoteType)
|
|
}
|
|
|
|
/// A macro used to generate a `FromReflect` trait implementation for the given type.
|
|
///
|
|
/// This is functionally the same as [deriving `FromReflect`] on a type that [derives `Reflect`] using
|
|
/// the `#[reflect(opaque)]` container attribute.
|
|
///
|
|
/// The only reason this macro exists is so that `bevy_reflect` can easily implement `FromReflect` on
|
|
/// primitives and other opaque types internally.
|
|
///
|
|
/// Please note that this macro will not work with any type that [derives `Reflect`] normally
|
|
/// or makes use of the [`impl_reflect_opaque!`] macro, as those macros also implement `FromReflect`
|
|
/// by default.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_from_reflect_opaque!(foo<T1, T2: Baz> where T1: Bar);
|
|
/// ```
|
|
///
|
|
/// [deriving `FromReflect`]: FromReflect
|
|
/// [derives `Reflect`]: Reflect
|
|
#[proc_macro]
|
|
pub fn impl_from_reflect_opaque(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input with ReflectOpaqueDef::parse_from_reflect);
|
|
|
|
let default_name = &def.type_path.segments.last().unwrap().ident;
|
|
let type_path = if def.type_path.leading_colon.is_none()
|
|
&& def.custom_path.is_none()
|
|
&& def.generics.params.is_empty()
|
|
{
|
|
ReflectTypePath::Primitive(default_name)
|
|
} else {
|
|
ReflectTypePath::External {
|
|
path: &def.type_path,
|
|
custom_path: def.custom_path.map(|alias| alias.into_path(default_name)),
|
|
generics: &def.generics,
|
|
}
|
|
};
|
|
|
|
let from_reflect_impl =
|
|
from_reflect::impl_opaque(&ReflectMeta::new(type_path, def.traits.unwrap_or_default()));
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#from_reflect_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// A replacement for [deriving `TypePath`] for use on foreign types.
|
|
///
|
|
/// Since (unlike the derive) this macro may be invoked in a different module to where the type is defined,
|
|
/// it requires an 'absolute' path definition.
|
|
///
|
|
/// Specifically, a leading `::` denoting a global path must be specified
|
|
/// or a preceding `(in my_crate::foo)` to specify the custom path must be used.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Implementing `TypePath` on a foreign type:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(::foreign_crate::foo::bar::Baz);
|
|
/// ```
|
|
///
|
|
/// On a generic type (this can also accept trait bounds):
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(::foreign_crate::Foo<T>);
|
|
/// impl_type_path!(::foreign_crate::Goo<T: ?Sized>);
|
|
/// ```
|
|
///
|
|
/// On a primitive (note this will not compile for a non-primitive type):
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!(bool);
|
|
/// ```
|
|
///
|
|
/// With a custom type path:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!((in other_crate::foo::bar) Baz);
|
|
/// ```
|
|
///
|
|
/// With a custom type path and a custom type name:
|
|
/// ```ignore (bevy_reflect is not accessible from this crate)
|
|
/// impl_type_path!((in other_crate::foo as Baz) Bar);
|
|
/// ```
|
|
///
|
|
/// [deriving `TypePath`]: TypePath
|
|
#[proc_macro]
|
|
pub fn impl_type_path(input: TokenStream) -> TokenStream {
|
|
let def = parse_macro_input!(input as NamedTypePathDef);
|
|
|
|
let type_path = match def {
|
|
NamedTypePathDef::External {
|
|
ref path,
|
|
custom_path,
|
|
ref generics,
|
|
} => {
|
|
let default_name = &path.segments.last().unwrap().ident;
|
|
|
|
ReflectTypePath::External {
|
|
path,
|
|
custom_path: custom_path.map(|path| path.into_path(default_name)),
|
|
generics,
|
|
}
|
|
}
|
|
NamedTypePathDef::Primitive(ref ident) => ReflectTypePath::Primitive(ident),
|
|
};
|
|
|
|
let meta = ReflectMeta::new(type_path, ContainerAttributes::default());
|
|
|
|
let type_path_impl = impls::impl_type_path(&meta);
|
|
|
|
TokenStream::from(quote! {
|
|
const _: () = {
|
|
#type_path_impl
|
|
};
|
|
})
|
|
}
|
|
|
|
/// Collects and loads type registrations when using `auto_register_static` feature.
|
|
/// The steps to using it correctly require the following:
|
|
/// 1. This macro must be called **last** during compilation. This can be achieved by putting your main function
|
|
/// in a separate crate or restructuring your project to be separated into `bin` and `lib`, and putting this macro in `bin`.
|
|
/// Any automatic type registrations using `#[derive(Reflect)]` within the same crate as this macro are not guaranteed to run.
|
|
/// 2. Your project must be compiled with `auto_register_static` feature **and** `BEVY_REFLECT_AUTO_REGISTER_STATIC=1` env variable.
|
|
/// Enabling the feature generates registration functions while setting the variable enables export and
|
|
/// caching of registration function names.
|
|
/// 3. Must be called before creating `App` or using `TypeRegistry::register_derived_types`.
|
|
///
|
|
/// If you're experiencing linking issues try running `cargo clean` before rebuilding.
|
|
#[proc_macro]
|
|
pub fn load_type_registrations(_input: TokenStream) -> TokenStream {
|
|
if !cfg!(feature = "auto_register_static") {
|
|
return TokenStream::new();
|
|
}
|
|
|
|
let Ok(dir) = fs::read_dir(PathBuf::from("target").join("bevy_reflect_type_registrations"))
|
|
else {
|
|
return TokenStream::new();
|
|
};
|
|
let mut str_buf = String::new();
|
|
let mut registration_fns = Vec::new();
|
|
for file_path in dir {
|
|
let mut file = fs::OpenOptions::new()
|
|
.read(true)
|
|
.open(file_path.unwrap().path())
|
|
.unwrap();
|
|
file.read_to_string(&mut str_buf).unwrap();
|
|
registration_fns.extend(str_buf.lines().filter(|s| !s.is_empty()).map(|s| {
|
|
s.parse::<proc_macro2::TokenStream>()
|
|
.expect("Unexpected function name")
|
|
}));
|
|
str_buf.clear();
|
|
}
|
|
let bevy_reflect_path = meta::get_bevy_reflect_path();
|
|
TokenStream::from(quote! {
|
|
{
|
|
fn _register_types(){
|
|
unsafe extern "Rust" {
|
|
#( safe fn #registration_fns(registry_ptr: &mut #bevy_reflect_path::TypeRegistry); )*
|
|
};
|
|
#( #bevy_reflect_path::__macro_exports::auto_register::push_registration_fn(#registration_fns); )*
|
|
}
|
|
_register_types();
|
|
}
|
|
})
|
|
}
|