bevy/crates/bevy_tasks/src/edge_executor.rs
Zachary Harrold cc69fdd0c6
Add no_std support to bevy (#17955)
# Objective

- Fixes #15460 (will open new issues for further `no_std` efforts)
- Supersedes #17715

## Solution

- Threaded in new features as required
- Made certain crates optional but default enabled
- Removed `compile-check-no-std` from internal `ci` tool since GitHub CI
can now simply check `bevy` itself now
- Added CI task to check `bevy` on `thumbv6m-none-eabi` to ensure
`portable-atomic` support is still valid [^1]

[^1]: This may be controversial, since it could be interpreted as
implying Bevy will maintain support for `thumbv6m-none-eabi` going
forward. In reality, just like `x86_64-unknown-none`, this is a
[canary](https://en.wiktionary.org/wiki/canary_in_a_coal_mine) target to
make it clear when `portable-atomic` no longer works as intended (fixing
atomic support on atomically challenged platforms). If a PR comes
through and makes supporting this class of platforms impossible, then
this CI task can be removed. I however wager this won't be a problem.

## Testing

- CI

---

## Release Notes

Bevy now has support for `no_std` directly from the `bevy` crate.

Users can disable default features and enable a new `default_no_std`
feature instead, allowing `bevy` to be used in `no_std` applications and
libraries.

```toml
# Bevy for `no_std` platforms
bevy = { version = "0.16", default-features = false, features = ["default_no_std"] }
```

`default_no_std` enables certain required features, such as `libm` and
`critical-section`, and as many optional crates as possible (currently
just `bevy_state`). For atomically-challenged platforms such as the
Raspberry Pi Pico, `portable-atomic` will be used automatically.

For library authors, we recommend depending on `bevy` with
`default-features = false` to allow `std` and `no_std` users to both
depend on your crate. Here are some recommended features a library crate
may want to expose:

```toml
[features]
# Most users will be on a platform which has `std` and can use the more-powerful `async_executor`.
default = ["std", "async_executor"]

# Features for typical platforms.
std = ["bevy/std"]
async_executor = ["bevy/async_executor"]

# Features for `no_std` platforms.
libm = ["bevy/libm"]
critical-section = ["bevy/critical-section"]

[dependencies]
# We disable default features to ensure we don't accidentally enable `std` on `no_std` targets, for example. 
bevy = { version = "0.16", default-features = false }
```

While this is verbose, it gives the maximum control to end-users to
decide how they wish to use Bevy on their platform.

We encourage library authors to experiment with `no_std` support. For
libraries relying exclusively on `bevy` and no other dependencies, it
may be as simple as adding `#![no_std]` to your `lib.rs` and exposing
features as above! Bevy can also provide many `std` types, such as
`HashMap`, `Mutex`, and `Instant` on all platforms. See
`bevy::platform_support` for details on what's available out of the box!

## Migration Guide

- If you were previously relying on `bevy` with default features
disabled, you may need to enable the `std` and `async_executor`
features.
- `bevy_reflect` has had its `bevy` feature removed. If you were relying
on this feature, simply enable `smallvec` and `smol_str` instead.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-07 03:39:46 +00:00

654 lines
18 KiB
Rust

//! Alternative to `async_executor` based on [`edge_executor`] by Ivan Markov.
//!
//! It has been vendored along with its tests to update several outdated dependencies.
//!
//! [`async_executor`]: https://github.com/smol-rs/async-executor
//! [`edge_executor`]: https://github.com/ivmarkov/edge-executor
#![expect(unsafe_code, reason = "original implementation relies on unsafe")]
#![expect(
dead_code,
reason = "keeping methods from original implementation for transparency"
)]
// TODO: Create a more tailored replacement, possibly integrating [Fotre](https://github.com/NthTensor/Forte)
use alloc::rc::Rc;
use core::{
future::{poll_fn, Future},
marker::PhantomData,
task::{Context, Poll},
};
use async_task::{Runnable, Task};
use atomic_waker::AtomicWaker;
use bevy_platform_support::sync::Arc;
use futures_lite::FutureExt;
use once_cell::sync::OnceCell;
/// An async executor.
///
/// # Examples
///
/// A multi-threaded executor:
///
/// ```ignore
/// use async_channel::unbounded;
/// use easy_parallel::Parallel;
///
/// use edge_executor::{Executor, block_on};
///
/// let ex: Executor = Default::default();
/// let (signal, shutdown) = unbounded::<()>();
///
/// Parallel::new()
/// // Run four executor threads.
/// .each(0..4, |_| block_on(ex.run(shutdown.recv())))
/// // Run the main future on the current thread.
/// .finish(|| block_on(async {
/// println!("Hello world!");
/// drop(signal);
/// }));
/// ```
pub struct Executor<'a, const C: usize = 64> {
state: OnceCell<Arc<State<C>>>,
_invariant: PhantomData<core::cell::UnsafeCell<&'a ()>>,
}
impl<'a, const C: usize> Executor<'a, C> {
/// Creates a new executor.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::Executor;
///
/// let ex: Executor = Default::default();
/// ```
pub const fn new() -> Self {
Self {
state: OnceCell::new(),
_invariant: PhantomData,
}
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::Executor;
///
/// let ex: Executor = Default::default();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
///
/// Note that if the executor's queue size is equal to the number of currently
/// spawned and running tasks, spawning this additional task might cause the executor to panic
/// later, when the task is scheduled for polling.
pub fn spawn<F>(&self, fut: F) -> Task<F::Output>
where
F: Future + Send + 'a,
F::Output: Send + 'a,
{
// SAFETY: Original implementation missing safety documentation
unsafe { self.spawn_unchecked(fut) }
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::Executor;
///
/// let ex: Executor = Default::default();
/// assert!(!ex.try_tick()); // no tasks to run
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
if let Some(runnable) = self.try_runnable() {
runnable.run();
true
} else {
false
}
}
/// Runs a single task asynchronously.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::{Executor, block_on};
///
/// let ex: Executor = Default::default();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// block_on(ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
self.runnable().await.run();
}
/// Runs the executor asynchronously until the given future completes.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::{Executor, block_on};
///
/// let ex: Executor = Default::default();
///
/// let task = ex.spawn(async { 1 + 2 });
/// let res = block_on(ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<F>(&self, fut: F) -> F::Output
where
F: Future + Send + 'a,
{
// SAFETY: Original implementation missing safety documentation
unsafe { self.run_unchecked(fut).await }
}
/// Waits for the next runnable task to run.
async fn runnable(&self) -> Runnable {
poll_fn(|ctx| self.poll_runnable(ctx)).await
}
/// Polls the first task scheduled for execution by the executor.
fn poll_runnable(&self, ctx: &Context<'_>) -> Poll<Runnable> {
self.state().waker.register(ctx.waker());
if let Some(runnable) = self.try_runnable() {
Poll::Ready(runnable)
} else {
Poll::Pending
}
}
/// Pops the first task scheduled for execution by the executor.
///
/// Returns
/// - `None` - if no task was scheduled for execution
/// - `Some(Runnnable)` - the first task scheduled for execution. Calling `Runnable::run` will
/// execute the task. In other words, it will poll its future.
fn try_runnable(&self) -> Option<Runnable> {
let runnable;
#[cfg(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
))]
{
runnable = self.state().queue.pop();
}
#[cfg(not(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
)))]
{
runnable = self.state().queue.dequeue();
}
runnable
}
/// # Safety
///
/// Original implementation missing safety documentation
unsafe fn spawn_unchecked<F>(&self, fut: F) -> Task<F::Output>
where
F: Future,
{
let schedule = {
let state = self.state().clone();
move |runnable| {
#[cfg(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
))]
{
state.queue.push(runnable).unwrap();
}
#[cfg(not(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
)))]
{
state.queue.enqueue(runnable).unwrap();
}
if let Some(waker) = state.waker.take() {
waker.wake();
}
}
};
// SAFETY: Original implementation missing safety documentation
let (runnable, task) = unsafe { async_task::spawn_unchecked(fut, schedule) };
runnable.schedule();
task
}
/// # Safety
///
/// Original implementation missing safety documentation
async unsafe fn run_unchecked<F>(&self, fut: F) -> F::Output
where
F: Future,
{
let run_forever = async {
loop {
self.tick().await;
}
};
run_forever.or(fut).await
}
/// Returns a reference to the inner state.
fn state(&self) -> &Arc<State<C>> {
self.state.get_or_init(|| Arc::new(State::new()))
}
}
impl<'a, const C: usize> Default for Executor<'a, C> {
fn default() -> Self {
Self::new()
}
}
// SAFETY: Original implementation missing safety documentation
unsafe impl<'a, const C: usize> Send for Executor<'a, C> {}
// SAFETY: Original implementation missing safety documentation
unsafe impl<'a, const C: usize> Sync for Executor<'a, C> {}
/// A thread-local executor.
///
/// The executor can only be run on the thread that created it.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::{LocalExecutor, block_on};
///
/// let local_ex: LocalExecutor = Default::default();
///
/// block_on(local_ex.run(async {
/// println!("Hello world!");
/// }));
/// ```
pub struct LocalExecutor<'a, const C: usize = 64> {
executor: Executor<'a, C>,
_not_send: PhantomData<core::cell::UnsafeCell<&'a Rc<()>>>,
}
impl<'a, const C: usize> LocalExecutor<'a, C> {
/// Creates a single-threaded executor.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::LocalExecutor;
///
/// let local_ex: LocalExecutor = Default::default();
/// ```
pub const fn new() -> Self {
Self {
executor: Executor::<C>::new(),
_not_send: PhantomData,
}
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::LocalExecutor;
///
/// let local_ex: LocalExecutor = Default::default();
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
///
/// Note that if the executor's queue size is equal to the number of currently
/// spawned and running tasks, spawning this additional task might cause the executor to panic
/// later, when the task is scheduled for polling.
pub fn spawn<F>(&self, fut: F) -> Task<F::Output>
where
F: Future + 'a,
F::Output: 'a,
{
// SAFETY: Original implementation missing safety documentation
unsafe { self.executor.spawn_unchecked(fut) }
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::LocalExecutor;
///
/// let local_ex: LocalExecutor = Default::default();
/// assert!(!local_ex.try_tick()); // no tasks to run
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(local_ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
self.executor.try_tick()
}
/// Runs a single task asynchronously.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::{LocalExecutor, block_on};
///
/// let local_ex: LocalExecutor = Default::default();
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// block_on(local_ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
self.executor.tick().await;
}
/// Runs the executor asynchronously until the given future completes.
///
/// # Examples
///
/// ```ignore
/// use edge_executor::{LocalExecutor, block_on};
///
/// let local_ex: LocalExecutor = Default::default();
///
/// let task = local_ex.spawn(async { 1 + 2 });
/// let res = block_on(local_ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<F>(&self, fut: F) -> F::Output
where
F: Future,
{
// SAFETY: Original implementation missing safety documentation
unsafe { self.executor.run_unchecked(fut) }.await
}
}
impl<'a, const C: usize> Default for LocalExecutor<'a, C> {
fn default() -> Self {
Self::new()
}
}
struct State<const C: usize> {
#[cfg(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
))]
queue: crossbeam_queue::ArrayQueue<Runnable>,
#[cfg(not(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
)))]
queue: heapless::mpmc::MpMcQueue<Runnable, C>,
waker: AtomicWaker,
}
impl<const C: usize> State<C> {
fn new() -> Self {
Self {
#[cfg(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
))]
queue: crossbeam_queue::ArrayQueue::new(C),
#[cfg(not(all(
target_has_atomic = "8",
target_has_atomic = "16",
target_has_atomic = "32",
target_has_atomic = "64",
target_has_atomic = "ptr"
)))]
queue: heapless::mpmc::MpMcQueue::new(),
waker: AtomicWaker::new(),
}
}
}
#[cfg(test)]
mod different_executor_tests {
use core::cell::Cell;
use futures_lite::future::{block_on, pending, poll_once};
use futures_lite::pin;
use super::LocalExecutor;
#[test]
fn shared_queue_slot() {
block_on(async {
let was_polled = Cell::new(false);
let future = async {
was_polled.set(true);
pending::<()>().await;
};
let ex1: LocalExecutor = Default::default();
let ex2: LocalExecutor = Default::default();
// Start the futures for running forever.
let (run1, run2) = (ex1.run(pending::<()>()), ex2.run(pending::<()>()));
pin!(run1);
pin!(run2);
assert!(poll_once(run1.as_mut()).await.is_none());
assert!(poll_once(run2.as_mut()).await.is_none());
// Spawn the future on executor one and then poll executor two.
ex1.spawn(future).detach();
assert!(poll_once(run2).await.is_none());
assert!(!was_polled.get());
// Poll the first one.
assert!(poll_once(run1).await.is_none());
assert!(was_polled.get());
});
}
}
#[cfg(test)]
mod drop_tests {
use alloc::string::String;
use core::mem;
use core::sync::atomic::{AtomicUsize, Ordering};
use core::task::{Poll, Waker};
use std::sync::Mutex;
use futures_lite::future;
use once_cell::sync::Lazy;
use super::{Executor, Task};
#[test]
fn leaked_executor_leaks_everything() {
static DROP: AtomicUsize = AtomicUsize::new(0);
static WAKER: Lazy<Mutex<Option<Waker>>> = Lazy::new(Default::default);
let ex: Executor = Default::default();
let task = ex.spawn(async {
let _guard = CallOnDrop(|| {
DROP.fetch_add(1, Ordering::SeqCst);
});
future::poll_fn(|cx| {
*WAKER.lock().unwrap() = Some(cx.waker().clone());
Poll::Pending::<()>
})
.await;
});
future::block_on(ex.tick());
assert!(WAKER.lock().unwrap().is_some());
assert_eq!(DROP.load(Ordering::SeqCst), 0);
mem::forget(ex);
assert_eq!(DROP.load(Ordering::SeqCst), 0);
assert!(future::block_on(future::poll_once(task)).is_none());
assert_eq!(DROP.load(Ordering::SeqCst), 0);
}
#[test]
fn await_task_after_dropping_executor() {
let s: String = "hello".into();
let ex: Executor = Default::default();
let task: Task<&str> = ex.spawn(async { &*s });
assert!(ex.try_tick());
drop(ex);
assert_eq!(future::block_on(task), "hello");
drop(s);
}
#[test]
fn drop_executor_and_then_drop_finished_task() {
static DROP: AtomicUsize = AtomicUsize::new(0);
let ex: Executor = Default::default();
let task = ex.spawn(async {
CallOnDrop(|| {
DROP.fetch_add(1, Ordering::SeqCst);
})
});
assert!(ex.try_tick());
assert_eq!(DROP.load(Ordering::SeqCst), 0);
drop(ex);
assert_eq!(DROP.load(Ordering::SeqCst), 0);
drop(task);
assert_eq!(DROP.load(Ordering::SeqCst), 1);
}
#[test]
fn drop_finished_task_and_then_drop_executor() {
static DROP: AtomicUsize = AtomicUsize::new(0);
let ex: Executor = Default::default();
let task = ex.spawn(async {
CallOnDrop(|| {
DROP.fetch_add(1, Ordering::SeqCst);
})
});
assert!(ex.try_tick());
assert_eq!(DROP.load(Ordering::SeqCst), 0);
drop(task);
assert_eq!(DROP.load(Ordering::SeqCst), 1);
drop(ex);
assert_eq!(DROP.load(Ordering::SeqCst), 1);
}
struct CallOnDrop<F: Fn()>(F);
impl<F: Fn()> Drop for CallOnDrop<F> {
fn drop(&mut self) {
(self.0)();
}
}
}
#[cfg(test)]
mod local_queue {
use alloc::boxed::Box;
use futures_lite::{future, pin};
use super::Executor;
#[test]
fn two_queues() {
future::block_on(async {
// Create an executor with two runners.
let ex: Executor = Default::default();
let (run1, run2) = (
ex.run(future::pending::<()>()),
ex.run(future::pending::<()>()),
);
let mut run1 = Box::pin(run1);
pin!(run2);
// Poll them both.
assert!(future::poll_once(run1.as_mut()).await.is_none());
assert!(future::poll_once(run2.as_mut()).await.is_none());
// Drop the first one, which should leave the local queue in the `None` state.
drop(run1);
assert!(future::poll_once(run2.as_mut()).await.is_none());
});
}
}