bevy/crates/bevy_math/src/rects/urect.rs
Rob Parrett 30d84519a2
Use en-us locale for typos (#16037)
# Objective

Bevy seems to want to standardize on "American English" spellings. Not
sure if this is laid out anywhere in writing, but see also #15947.

While perusing the docs for `typos`, I noticed that it has a `locale`
config option and tried it out.

## Solution

Switch to `en-us` locale in the `typos` config and run `typos -w`

## Migration Guide

The following methods or fields have been renamed from `*dependants*` to
`*dependents*`.

- `ProcessorAssetInfo::dependants`
- `ProcessorAssetInfos::add_dependant`
- `ProcessorAssetInfos::non_existent_dependants`
- `AssetInfo::dependants_waiting_on_load`
- `AssetInfo::dependants_waiting_on_recursive_dep_load`
- `AssetInfos::loader_dependants`
- `AssetInfos::remove_dependants_and_labels`
2024-10-20 18:55:17 +00:00

485 lines
15 KiB
Rust

use crate::{IRect, Rect, UVec2};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// A rectangle defined by two opposite corners.
///
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
/// stored in `URect::min` and `URect::max`, respectively. The minimum/maximum invariant
/// must be upheld by the user when directly assigning the fields, otherwise some methods
/// produce invalid results. It is generally recommended to use one of the constructor
/// methods instead, which will ensure this invariant is met, unless you already have
/// the minimum and maximum corners.
#[repr(C)]
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Hash, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct URect {
/// The minimum corner point of the rect.
pub min: UVec2,
/// The maximum corner point of the rect.
pub max: UVec2,
}
impl URect {
/// An empty `URect`, represented by maximum and minimum corner points
/// with `max == UVec2::MIN` and `min == UVec2::MAX`, so the
/// rect has an extremely large negative size.
/// This is useful, because when taking a union B of a non-empty `URect` A and
/// this empty `URect`, B will simply equal A.
pub const EMPTY: Self = Self {
max: UVec2::MIN,
min: UVec2::MAX,
};
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::URect;
/// let r = URect::new(0, 4, 10, 6); // w=10 h=2
/// let r = URect::new(2, 4, 5, 0); // w=3 h=4
/// ```
#[inline]
pub fn new(x0: u32, y0: u32, x1: u32, y1: u32) -> Self {
Self::from_corners(UVec2::new(x0, y0), UVec2::new(x1, y1))
}
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// // Unit rect from [0,0] to [1,1]
/// let r = URect::from_corners(UVec2::ZERO, UVec2::ONE); // w=1 h=1
/// // Same; the points do not need to be ordered
/// let r = URect::from_corners(UVec2::ONE, UVec2::ZERO); // w=1 h=1
/// ```
#[inline]
pub fn from_corners(p0: UVec2, p1: UVec2) -> Self {
Self {
min: p0.min(p1),
max: p0.max(p1),
}
}
/// Create a new rectangle from its center and size.
///
/// # Rounding Behavior
///
/// If the size contains odd numbers they will be rounded down to the nearest whole number.
///
/// # Panics
///
/// This method panics if any of the components of the size is negative or if `origin - (size / 2)` results in any negatives.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::from_center_size(UVec2::ONE, UVec2::splat(2)); // w=2 h=2
/// assert_eq!(r.min, UVec2::splat(0));
/// assert_eq!(r.max, UVec2::splat(2));
/// ```
#[inline]
pub fn from_center_size(origin: UVec2, size: UVec2) -> Self {
assert!(origin.cmpge(size / 2).all(), "Origin must always be greater than or equal to (size / 2) otherwise the rectangle is undefined! Origin was {origin} and size was {size}");
let half_size = size / 2;
Self::from_center_half_size(origin, half_size)
}
/// Create a new rectangle from its center and half-size.
///
/// # Panics
///
/// This method panics if any of the components of the half-size is negative or if `origin - half_size` results in any negatives.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::from_center_half_size(UVec2::ONE, UVec2::ONE); // w=2 h=2
/// assert_eq!(r.min, UVec2::splat(0));
/// assert_eq!(r.max, UVec2::splat(2));
/// ```
#[inline]
pub fn from_center_half_size(origin: UVec2, half_size: UVec2) -> Self {
assert!(origin.cmpge(half_size).all(), "Origin must always be greater than or equal to half_size otherwise the rectangle is undefined! Origin was {origin} and half_size was {half_size}");
Self {
min: origin - half_size,
max: origin + half_size,
}
}
/// Check if the rectangle is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::from_corners(UVec2::ZERO, UVec2::new(0, 1)); // w=0 h=1
/// assert!(r.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.min.cmpge(self.max).any()
}
/// Rectangle width (max.x - min.x).
///
/// # Examples
///
/// ```
/// # use bevy_math::URect;
/// let r = URect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.width(), 5);
/// ```
#[inline]
pub const fn width(&self) -> u32 {
self.max.x - self.min.x
}
/// Rectangle height (max.y - min.y).
///
/// # Examples
///
/// ```
/// # use bevy_math::URect;
/// let r = URect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.height(), 1);
/// ```
#[inline]
pub const fn height(&self) -> u32 {
self.max.y - self.min.y
}
/// Rectangle size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::new(0, 0, 5, 1); // w=5 h=1
/// assert_eq!(r.size(), UVec2::new(5, 1));
/// ```
#[inline]
pub fn size(&self) -> UVec2 {
self.max - self.min
}
/// Rectangle half-size.
///
/// # Rounding Behavior
///
/// If the full size contains odd numbers they will be rounded down to the nearest whole number when calculating the half size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::new(0, 0, 4, 2); // w=4 h=2
/// assert_eq!(r.half_size(), UVec2::new(2, 1));
/// ```
#[inline]
pub fn half_size(&self) -> UVec2 {
self.size() / 2
}
/// The center point of the rectangle.
///
/// # Rounding Behavior
///
/// If the (min + max) contains odd numbers they will be rounded down to the nearest whole number when calculating the center.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::new(0, 0, 4, 2); // w=4 h=2
/// assert_eq!(r.center(), UVec2::new(2, 1));
/// ```
#[inline]
pub fn center(&self) -> UVec2 {
(self.min + self.max) / 2
}
/// Check if a point lies within this rectangle, inclusive of its edges.
///
/// # Examples
///
/// ```
/// # use bevy_math::URect;
/// let r = URect::new(0, 0, 5, 1); // w=5 h=1
/// assert!(r.contains(r.center()));
/// assert!(r.contains(r.min));
/// assert!(r.contains(r.max));
/// ```
#[inline]
pub fn contains(&self, point: UVec2) -> bool {
(point.cmpge(self.min) & point.cmple(self.max)).all()
}
/// Build a new rectangle formed of the union of this rectangle and another rectangle.
///
/// The union is the smallest rectangle enclosing both rectangles.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r1 = URect::new(0, 0, 5, 1); // w=5 h=1
/// let r2 = URect::new(1, 0, 3, 8); // w=2 h=4
/// let r = r1.union(r2);
/// assert_eq!(r.min, UVec2::new(0, 0));
/// assert_eq!(r.max, UVec2::new(5, 8));
/// ```
#[inline]
pub fn union(&self, other: Self) -> Self {
Self {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// Build a new rectangle formed of the union of this rectangle and a point.
///
/// The union is the smallest rectangle enclosing both the rectangle and the point. If the
/// point is already inside the rectangle, this method returns a copy of the rectangle.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::new(0, 0, 5, 1); // w=5 h=1
/// let u = r.union_point(UVec2::new(3, 6));
/// assert_eq!(u.min, UVec2::ZERO);
/// assert_eq!(u.max, UVec2::new(5, 6));
/// ```
#[inline]
pub fn union_point(&self, other: UVec2) -> Self {
Self {
min: self.min.min(other),
max: self.max.max(other),
}
}
/// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
///
/// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
/// is empty, this method returns an empty rectangle ([`URect::is_empty()`] returns `true`), but
/// the actual values of [`URect::min`] and [`URect::max`] are implementation-dependent.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r1 = URect::new(0, 0, 2, 2); // w=2 h=2
/// let r2 = URect::new(1, 1, 3, 3); // w=2 h=2
/// let r = r1.intersect(r2);
/// assert_eq!(r.min, UVec2::new(1, 1));
/// assert_eq!(r.max, UVec2::new(2, 2));
/// ```
#[inline]
pub fn intersect(&self, other: Self) -> Self {
let mut r = Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Create a new rectangle by expanding it evenly on all sides.
///
/// A positive expansion value produces a larger rectangle,
/// while a negative expansion value produces a smaller rectangle.
/// If this would result in zero width or height, [`URect::EMPTY`] is returned instead.
///
/// # Examples
///
/// ```
/// # use bevy_math::{URect, UVec2};
/// let r = URect::new(4, 4, 6, 6); // w=2 h=2
/// let r2 = r.inflate(1); // w=4 h=4
/// assert_eq!(r2.min, UVec2::splat(3));
/// assert_eq!(r2.max, UVec2::splat(7));
///
/// let r = URect::new(4, 4, 8, 8); // w=4 h=4
/// let r2 = r.inflate(-1); // w=2 h=2
/// assert_eq!(r2.min, UVec2::splat(5));
/// assert_eq!(r2.max, UVec2::splat(7));
/// ```
#[inline]
pub fn inflate(&self, expansion: i32) -> Self {
let mut r = Self {
min: UVec2::new(
self.min.x.saturating_add_signed(-expansion),
self.min.y.saturating_add_signed(-expansion),
),
max: UVec2::new(
self.max.x.saturating_add_signed(expansion),
self.max.y.saturating_add_signed(expansion),
),
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Returns self as [`Rect`] (f32)
#[inline]
pub fn as_rect(&self) -> Rect {
Rect::from_corners(self.min.as_vec2(), self.max.as_vec2())
}
/// Returns self as [`IRect`] (i32)
#[inline]
pub fn as_irect(&self) -> IRect {
IRect::from_corners(self.min.as_ivec2(), self.max.as_ivec2())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn well_formed() {
let r = URect::from_center_size(UVec2::new(10, 16), UVec2::new(8, 12));
assert_eq!(r.min, UVec2::new(6, 10));
assert_eq!(r.max, UVec2::new(14, 22));
assert_eq!(r.center(), UVec2::new(10, 16));
assert_eq!(r.width(), 8);
assert_eq!(r.height(), 12);
assert_eq!(r.size(), UVec2::new(8, 12));
assert_eq!(r.half_size(), UVec2::new(4, 6));
assert!(r.contains(UVec2::new(7, 10)));
assert!(r.contains(UVec2::new(14, 10)));
assert!(r.contains(UVec2::new(10, 22)));
assert!(r.contains(UVec2::new(6, 22)));
assert!(r.contains(UVec2::new(14, 22)));
assert!(!r.contains(UVec2::new(50, 5)));
}
#[test]
fn rect_union() {
let r = URect::from_center_size(UVec2::splat(4), UVec2::splat(4)); // [2, 2] - [6, 6]
// overlapping
let r2 = URect {
min: UVec2::new(0, 0),
max: UVec2::new(3, 3),
};
let u = r.union(r2);
assert_eq!(u.min, UVec2::new(0, 0));
assert_eq!(u.max, UVec2::new(6, 6));
// disjoint
let r2 = URect {
min: UVec2::new(4, 7),
max: UVec2::new(8, 8),
};
let u = r.union(r2);
assert_eq!(u.min, UVec2::new(2, 2));
assert_eq!(u.max, UVec2::new(8, 8));
// included
let r2 = URect::from_center_size(UVec2::splat(4), UVec2::splat(2));
let u = r.union(r2);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
// including
let r2 = URect::from_center_size(UVec2::splat(4), UVec2::splat(6));
let u = r.union(r2);
assert_eq!(u.min, r2.min);
assert_eq!(u.min, r2.min);
}
#[test]
fn rect_union_pt() {
let r = URect::from_center_size(UVec2::splat(4), UVec2::splat(4)); // [2, 2] - [6, 6]
// inside
let v = UVec2::new(2, 5);
let u = r.union_point(v);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
// outside
let v = UVec2::new(10, 5);
let u = r.union_point(v);
assert_eq!(u.min, UVec2::new(2, 2));
assert_eq!(u.max, UVec2::new(10, 6));
}
#[test]
fn rect_intersect() {
let r = URect::from_center_size(UVec2::splat(6), UVec2::splat(8)); // [2, 2] - [10, 10]
// overlapping
let r2 = URect {
min: UVec2::new(8, 8),
max: UVec2::new(12, 12),
};
let u = r.intersect(r2);
assert_eq!(u.min, UVec2::new(8, 8));
assert_eq!(u.max, UVec2::new(10, 10));
// disjoint
let r2 = URect {
min: UVec2::new(12, 12),
max: UVec2::new(14, 18),
};
let u = r.intersect(r2);
assert!(u.is_empty());
assert_eq!(u.width(), 0);
// included
let r2 = URect::from_center_size(UVec2::splat(6), UVec2::splat(2));
let u = r.intersect(r2);
assert_eq!(u.min, r2.min);
assert_eq!(u.max, r2.max);
// including
let r2 = URect::from_center_size(UVec2::splat(6), UVec2::splat(10));
let u = r.intersect(r2);
assert_eq!(u.min, r.min);
assert_eq!(u.max, r.max);
}
#[test]
fn rect_inflate() {
let r = URect::from_center_size(UVec2::splat(6), UVec2::splat(6)); // [3, 3] - [9, 9]
let r2 = r.inflate(2);
assert_eq!(r2.min, UVec2::new(1, 1));
assert_eq!(r2.max, UVec2::new(11, 11));
}
}