bevy/crates/bevy_math/src/ray.rs
Olle Lukowski d7fc20c484
Implemented Reflect for (almost) all bevy_math types (#13537)
# Objective

Fixes #13535.

## Solution

I implemented `Reflect` for close to all math types now, except for some
types that it would cause issues (like some boxed types).

## Testing

- Everything seems to still build, will await CI though.
---

## Changelog

- Made close to all math types implement `Reflect`.
2024-05-27 18:18:10 +00:00

196 lines
5.9 KiB
Rust

use crate::{
primitives::{InfinitePlane3d, Plane2d},
Dir2, Dir3, Vec2, Vec3,
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// An infinite half-line starting at `origin` and going in `direction` in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Deserialize, Serialize)
)]
pub struct Ray2d {
/// The origin of the ray.
pub origin: Vec2,
/// The direction of the ray.
pub direction: Dir2,
}
impl Ray2d {
/// Create a new `Ray2d` from a given origin and direction
///
/// # Panics
///
/// Panics if the given `direction` is zero (or very close to zero), or non-finite.
#[inline]
pub fn new(origin: Vec2, direction: Vec2) -> Self {
Self {
origin,
direction: Dir2::new(direction).expect("ray direction must be nonzero and finite"),
}
}
/// Get a point at a given distance along the ray
#[inline]
pub fn get_point(&self, distance: f32) -> Vec2 {
self.origin + *self.direction * distance
}
/// Get the distance to a plane if the ray intersects it
#[inline]
pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
let denominator = plane.normal.dot(*self.direction);
if denominator.abs() > f32::EPSILON {
let distance = (plane_origin - self.origin).dot(*plane.normal) / denominator;
if distance > f32::EPSILON {
return Some(distance);
}
}
None
}
}
/// An infinite half-line starting at `origin` and going in `direction` in 3D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Deserialize, Serialize)
)]
pub struct Ray3d {
/// The origin of the ray.
pub origin: Vec3,
/// The direction of the ray.
pub direction: Dir3,
}
impl Ray3d {
/// Create a new `Ray3d` from a given origin and direction
///
/// # Panics
///
/// Panics if the given `direction` is zero (or very close to zero), or non-finite.
#[inline]
pub fn new(origin: Vec3, direction: Vec3) -> Self {
Self {
origin,
direction: Dir3::new(direction).expect("ray direction must be nonzero and finite"),
}
}
/// Get a point at a given distance along the ray
#[inline]
pub fn get_point(&self, distance: f32) -> Vec3 {
self.origin + *self.direction * distance
}
/// Get the distance to a plane if the ray intersects it
#[inline]
pub fn intersect_plane(&self, plane_origin: Vec3, plane: InfinitePlane3d) -> Option<f32> {
let denominator = plane.normal.dot(*self.direction);
if denominator.abs() > f32::EPSILON {
let distance = (plane_origin - self.origin).dot(*plane.normal) / denominator;
if distance > f32::EPSILON {
return Some(distance);
}
}
None
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn intersect_plane_2d() {
let ray = Ray2d::new(Vec2::ZERO, Vec2::Y);
// Orthogonal, and test that an inverse plane_normal has the same result
assert_eq!(
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::Y)),
Some(1.0)
);
assert_eq!(
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::NEG_Y)),
Some(1.0)
);
assert!(ray
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::Y))
.is_none());
assert!(ray
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::NEG_Y))
.is_none());
// Diagonal
assert_eq!(
ray.intersect_plane(Vec2::Y, Plane2d::new(Vec2::ONE)),
Some(1.0)
);
assert!(ray
.intersect_plane(Vec2::NEG_Y, Plane2d::new(Vec2::ONE))
.is_none());
// Parallel
assert!(ray
.intersect_plane(Vec2::X, Plane2d::new(Vec2::X))
.is_none());
// Parallel with simulated rounding error
assert!(ray
.intersect_plane(Vec2::X, Plane2d::new(Vec2::X + Vec2::Y * f32::EPSILON))
.is_none());
}
#[test]
fn intersect_plane_3d() {
let ray = Ray3d::new(Vec3::ZERO, Vec3::Z);
// Orthogonal, and test that an inverse plane_normal has the same result
assert_eq!(
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::Z)),
Some(1.0)
);
assert_eq!(
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::NEG_Z)),
Some(1.0)
);
assert!(ray
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::Z))
.is_none());
assert!(ray
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::NEG_Z))
.is_none());
// Diagonal
assert_eq!(
ray.intersect_plane(Vec3::Z, InfinitePlane3d::new(Vec3::ONE)),
Some(1.0)
);
assert!(ray
.intersect_plane(Vec3::NEG_Z, InfinitePlane3d::new(Vec3::ONE))
.is_none());
// Parallel
assert!(ray
.intersect_plane(Vec3::X, InfinitePlane3d::new(Vec3::X))
.is_none());
// Parallel with simulated rounding error
assert!(ray
.intersect_plane(
Vec3::X,
InfinitePlane3d::new(Vec3::X + Vec3::Z * f32::EPSILON)
)
.is_none());
}
}