# Objective NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267. "Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365). ## Solution This adds "base sets" as a variant of `SystemSet`: A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive: ```rust #[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)] #[system_set(base)] enum MyBaseSet { A, B, } ``` **Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build. **Base sets cannot belong to other sets**: this is where the word "base" comes from Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set. ```rust app.add_system(foo.in_base_set(MyBaseSet::A)) // X must be a normal set ... base sets cannot be added to base sets .configure_set(X.in_base_set(MyBaseSet::A)) ``` Base sets can still be configured like normal sets: ```rust app.add_system(MyBaseSet::B.after(MyBaseSet::Ap)) ``` The primary use case for base sets is enabling a "default base set": ```rust schedule.set_default_base_set(CoreSet::Update) // this will belong to CoreSet::Update by default .add_system(foo) // this will override the default base set with PostUpdate .add_system(bar.in_base_set(CoreSet::PostUpdate)) ``` This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides. --- ## Changelog - Added "base sets" and ported CoreSet to use them. ## Migration Guide TODO
		
			
				
	
	
		
			188 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
//! Simple benchmark to test rendering many point lights.
 | 
						|
//! Run with `WGPU_SETTINGS_PRIO=webgl2` to restrict to uniform buffers and max 256 lights.
 | 
						|
 | 
						|
use std::f64::consts::PI;
 | 
						|
 | 
						|
use bevy::{
 | 
						|
    diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
 | 
						|
    math::{DVec2, DVec3},
 | 
						|
    pbr::{ExtractedPointLight, GlobalLightMeta},
 | 
						|
    prelude::*,
 | 
						|
    render::{camera::ScalingMode, RenderApp, RenderSet},
 | 
						|
    window::{PresentMode, WindowPlugin},
 | 
						|
};
 | 
						|
use rand::{thread_rng, Rng};
 | 
						|
 | 
						|
fn main() {
 | 
						|
    App::new()
 | 
						|
        .add_plugins(DefaultPlugins.set(WindowPlugin {
 | 
						|
            primary_window: Some(Window {
 | 
						|
                resolution: (1024.0, 768.0).into(),
 | 
						|
                title: "many_lights".into(),
 | 
						|
                present_mode: PresentMode::AutoNoVsync,
 | 
						|
                ..default()
 | 
						|
            }),
 | 
						|
            ..default()
 | 
						|
        }))
 | 
						|
        .add_plugin(FrameTimeDiagnosticsPlugin::default())
 | 
						|
        .add_plugin(LogDiagnosticsPlugin::default())
 | 
						|
        .add_startup_system(setup)
 | 
						|
        .add_system(move_camera)
 | 
						|
        .add_system(print_light_count)
 | 
						|
        .add_plugin(LogVisibleLights)
 | 
						|
        .run();
 | 
						|
}
 | 
						|
 | 
						|
fn setup(
 | 
						|
    mut commands: Commands,
 | 
						|
    mut meshes: ResMut<Assets<Mesh>>,
 | 
						|
    mut materials: ResMut<Assets<StandardMaterial>>,
 | 
						|
) {
 | 
						|
    warn!(include_str!("warning_string.txt"));
 | 
						|
 | 
						|
    const LIGHT_RADIUS: f32 = 0.3;
 | 
						|
    const LIGHT_INTENSITY: f32 = 5.0;
 | 
						|
    const RADIUS: f32 = 50.0;
 | 
						|
    const N_LIGHTS: usize = 100_000;
 | 
						|
 | 
						|
    commands.spawn(PbrBundle {
 | 
						|
        mesh: meshes.add(
 | 
						|
            Mesh::try_from(shape::Icosphere {
 | 
						|
                radius: RADIUS,
 | 
						|
                subdivisions: 9,
 | 
						|
            })
 | 
						|
            .unwrap(),
 | 
						|
        ),
 | 
						|
        material: materials.add(StandardMaterial::from(Color::WHITE)),
 | 
						|
        transform: Transform::from_scale(Vec3::NEG_ONE),
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
 | 
						|
    let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
 | 
						|
    let material = materials.add(StandardMaterial {
 | 
						|
        base_color: Color::PINK,
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
 | 
						|
    // NOTE: This pattern is good for testing performance of culling as it provides roughly
 | 
						|
    // the same number of visible meshes regardless of the viewing angle.
 | 
						|
    // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
 | 
						|
    let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
 | 
						|
    let mut rng = thread_rng();
 | 
						|
    for i in 0..N_LIGHTS {
 | 
						|
        let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
 | 
						|
        let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
 | 
						|
        commands.spawn(PointLightBundle {
 | 
						|
            point_light: PointLight {
 | 
						|
                range: LIGHT_RADIUS,
 | 
						|
                intensity: LIGHT_INTENSITY,
 | 
						|
                color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5),
 | 
						|
                ..default()
 | 
						|
            },
 | 
						|
            transform: Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
 | 
						|
            ..default()
 | 
						|
        });
 | 
						|
    }
 | 
						|
 | 
						|
    // camera
 | 
						|
    match std::env::args().nth(1).as_deref() {
 | 
						|
        Some("orthographic") => commands.spawn(Camera3dBundle {
 | 
						|
            projection: OrthographicProjection {
 | 
						|
                scale: 20.0,
 | 
						|
                scaling_mode: ScalingMode::FixedHorizontal(1.0),
 | 
						|
                ..default()
 | 
						|
            }
 | 
						|
            .into(),
 | 
						|
            ..default()
 | 
						|
        }),
 | 
						|
        _ => commands.spawn(Camera3dBundle::default()),
 | 
						|
    };
 | 
						|
 | 
						|
    // add one cube, the only one with strong handles
 | 
						|
    // also serves as a reference point during rotation
 | 
						|
    commands.spawn(PbrBundle {
 | 
						|
        mesh,
 | 
						|
        material,
 | 
						|
        transform: Transform {
 | 
						|
            translation: Vec3::new(0.0, RADIUS, 0.0),
 | 
						|
            scale: Vec3::splat(5.0),
 | 
						|
            ..default()
 | 
						|
        },
 | 
						|
        ..default()
 | 
						|
    });
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: This epsilon value is apparently optimal for optimizing for the average
 | 
						|
// nearest-neighbor distance. See:
 | 
						|
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
 | 
						|
// for details.
 | 
						|
const EPSILON: f64 = 0.36;
 | 
						|
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
 | 
						|
    DVec2::new(
 | 
						|
        PI * 2. * (i as f64 / golden_ratio),
 | 
						|
        (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
 | 
						|
    )
 | 
						|
}
 | 
						|
 | 
						|
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
 | 
						|
    let (sin_theta, cos_theta) = p.x.sin_cos();
 | 
						|
    let (sin_phi, cos_phi) = p.y.sin_cos();
 | 
						|
    DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
 | 
						|
}
 | 
						|
 | 
						|
// System for rotating the camera
 | 
						|
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
 | 
						|
    let mut camera_transform = camera_query.single_mut();
 | 
						|
    let delta = time.delta_seconds() * 0.15;
 | 
						|
    camera_transform.rotate_z(delta);
 | 
						|
    camera_transform.rotate_x(delta);
 | 
						|
}
 | 
						|
 | 
						|
// System for printing the number of meshes on every tick of the timer
 | 
						|
fn print_light_count(time: Res<Time>, mut timer: Local<PrintingTimer>, lights: Query<&PointLight>) {
 | 
						|
    timer.0.tick(time.delta());
 | 
						|
 | 
						|
    if timer.0.just_finished() {
 | 
						|
        info!("Lights: {}", lights.iter().len(),);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct LogVisibleLights;
 | 
						|
 | 
						|
impl Plugin for LogVisibleLights {
 | 
						|
    fn build(&self, app: &mut App) {
 | 
						|
        let render_app = match app.get_sub_app_mut(RenderApp) {
 | 
						|
            Ok(render_app) => render_app,
 | 
						|
            Err(_) => return,
 | 
						|
        };
 | 
						|
 | 
						|
        render_app.add_system(print_visible_light_count.in_set(RenderSet::Prepare));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// System for printing the number of meshes on every tick of the timer
 | 
						|
fn print_visible_light_count(
 | 
						|
    time: Res<Time>,
 | 
						|
    mut timer: Local<PrintingTimer>,
 | 
						|
    visible: Query<&ExtractedPointLight>,
 | 
						|
    global_light_meta: Res<GlobalLightMeta>,
 | 
						|
) {
 | 
						|
    timer.0.tick(time.delta());
 | 
						|
 | 
						|
    if timer.0.just_finished() {
 | 
						|
        info!(
 | 
						|
            "Visible Lights: {}, Rendered Lights: {}",
 | 
						|
            visible.iter().len(),
 | 
						|
            global_light_meta.entity_to_index.len()
 | 
						|
        );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct PrintingTimer(Timer);
 | 
						|
 | 
						|
impl Default for PrintingTimer {
 | 
						|
    fn default() -> Self {
 | 
						|
        Self(Timer::from_seconds(1.0, TimerMode::Repeating))
 | 
						|
    }
 | 
						|
}
 |