bevy/crates/bevy_ecs/src/entity/clone_entities.rs
Gino Valente c2854a2a05
bevy_reflect: Deprecate PartialReflect::clone_value (#18284)
# Objective

#13432 added proper reflection-based cloning. This is a better method
than cloning via `clone_value` for reasons detailed in the description
of that PR. However, it may not be immediately apparent to users why one
should be used over the other, and what the gotchas of `clone_value`
are.

## Solution

This PR marks `PartialReflect::clone_value` as deprecated, with the
deprecation notice pointing users to `PartialReflect::reflect_clone`.
However, it also suggests using a new method introduced in this PR:
`PartialReflect::to_dynamic`.

`PartialReflect::to_dynamic` is essentially a renaming of
`PartialReflect::clone_value`. By naming it `to_dynamic`, we make it
very obvious that what's returned is a dynamic type. The one caveat to
this is that opaque types still use `reflect_clone` as they have no
corresponding dynamic type.

Along with changing the name, the method is now optional, and comes with
a default implementation that calls out to the respective reflection
subtrait method. This was done because there was really no reason to
require manual implementors provide a method that almost always calls
out to a known set of methods.

Lastly, to make this default implementation work, this PR also did a
similar thing with the `clone_dynamic ` methods on the reflection
subtraits. For example, `Struct::clone_dynamic` has been marked
deprecated and is superseded by `Struct::to_dynamic_struct`. This was
necessary to avoid the "multiple names in scope" issue.

### Open Questions

This PR maintains the original signature of `clone_value` on
`to_dynamic`. That is, it takes `&self` and returns `Box<dyn
PartialReflect>`.

However, in order for this to work, it introduces a panic if the value
is opaque and doesn't override the default `reflect_clone`
implementation.

One thing we could do to avoid the panic would be to make the conversion
fallible, either returning `Option<Box<dyn PartialReflect>>` or
`Result<Box<dyn PartialReflect>, ReflectCloneError>`.

This makes using the method a little more involved (i.e. users have to
either unwrap or handle the rare possibility of an error), but it would
set us up for a world where opaque types don't strictly need to be
`Clone`. Right now this bound is sort of implied by the fact that
`clone_value` is a required trait method, and the default behavior of
the macro is to use `Clone` for opaque types.

Alternatively, we could keep the signature but make the method required.
This maintains that implied bound where manual implementors must provide
some way of cloning the value (or YOLO it and just panic), but also
makes the API simpler to use.

Finally, we could just leave it with the panic. It's unlikely this would
occur in practice since our macro still requires `Clone` for opaque
types, and thus this would only ever be an issue if someone were to
manually implement `PartialReflect` without a valid `to_dynamic` or
`reflect_clone` method.

## Testing

You can test locally using the following command:

```
cargo test --package bevy_reflect --all-features
```

---

## Migration Guide

`PartialReflect::clone_value` is being deprecated. Instead, use
`PartialReflect::to_dynamic` if wanting to create a new dynamic instance
of the reflected value. Alternatively, use
`PartialReflect::reflect_clone` to attempt to create a true clone of the
underlying value.

Similarly, the following methods have been deprecated and should be
replaced with these alternatives:
- `Array::clone_dynamic` → `Array::to_dynamic_array`
- `Enum::clone_dynamic` → `Enum::to_dynamic_enum`
- `List::clone_dynamic` → `List::to_dynamic_list`
- `Map::clone_dynamic` → `Map::to_dynamic_map`
- `Set::clone_dynamic` → `Set::to_dynamic_set`
- `Struct::clone_dynamic` → `Struct::to_dynamic_struct`
- `Tuple::clone_dynamic` → `Tuple::to_dynamic_tuple`
- `TupleStruct::clone_dynamic` → `TupleStruct::to_dynamic_tuple_struct`
2025-03-14 19:33:57 +00:00

1419 lines
52 KiB
Rust

use alloc::{borrow::ToOwned, collections::VecDeque, vec::Vec};
use bevy_platform_support::collections::{HashMap, HashSet};
use bevy_ptr::{Ptr, PtrMut};
use bumpalo::Bump;
use core::any::TypeId;
#[cfg(feature = "bevy_reflect")]
use alloc::boxed::Box;
use crate::component::{ComponentCloneBehavior, ComponentCloneFn};
use crate::entity::hash_map::EntityHashMap;
use crate::entity::{Entities, EntityMapper};
use crate::relationship::RelationshipInsertHookMode;
use crate::system::Commands;
use crate::{
bundle::Bundle,
component::{Component, ComponentId, ComponentInfo},
entity::Entity,
query::DebugCheckedUnwrap,
world::World,
};
/// Provides read access to the source component (the component being cloned) in a [`ComponentCloneFn`].
pub struct SourceComponent<'a> {
ptr: Ptr<'a>,
info: &'a ComponentInfo,
}
impl<'a> SourceComponent<'a> {
/// Returns a reference to the component on the source entity.
///
/// Will return `None` if `ComponentId` of requested component does not match `ComponentId` of source component
pub fn read<C: Component>(&self) -> Option<&C> {
if self
.info
.type_id()
.is_some_and(|id| id == TypeId::of::<C>())
{
// SAFETY:
// - Components and ComponentId are from the same world
// - source_component_ptr holds valid data of the type referenced by ComponentId
unsafe { Some(self.ptr.deref::<C>()) }
} else {
None
}
}
/// Returns the "raw" pointer to the source component.
pub fn ptr(&self) -> Ptr<'a> {
self.ptr
}
/// Returns a reference to the component on the source entity as [`&dyn Reflect`](bevy_reflect::Reflect).
///
/// Will return `None` if:
/// - World does not have [`AppTypeRegistry`](`crate::reflect::AppTypeRegistry`).
/// - Component does not implement [`ReflectFromPtr`](bevy_reflect::ReflectFromPtr).
/// - Component is not registered.
/// - Component does not have [`TypeId`]
/// - Registered [`ReflectFromPtr`](bevy_reflect::ReflectFromPtr)'s [`TypeId`] does not match component's [`TypeId`]
#[cfg(feature = "bevy_reflect")]
pub fn read_reflect(
&self,
registry: &bevy_reflect::TypeRegistry,
) -> Option<&dyn bevy_reflect::Reflect> {
let type_id = self.info.type_id()?;
let reflect_from_ptr = registry.get_type_data::<bevy_reflect::ReflectFromPtr>(type_id)?;
if reflect_from_ptr.type_id() != type_id {
return None;
}
// SAFETY: `source_component_ptr` stores data represented by `component_id`, which we used to get `ReflectFromPtr`.
unsafe { Some(reflect_from_ptr.as_reflect(self.ptr)) }
}
}
/// Context for component clone handlers.
///
/// Provides fast access to useful resources like [`AppTypeRegistry`](crate::reflect::AppTypeRegistry)
/// and allows component clone handler to get information about component being cloned.
pub struct ComponentCloneCtx<'a, 'b> {
component_id: ComponentId,
target_component_written: bool,
bundle_scratch: &'a mut BundleScratch<'b>,
bundle_scratch_allocator: &'b Bump,
entities: &'a Entities,
source: Entity,
target: Entity,
component_info: &'a ComponentInfo,
entity_cloner: &'a mut EntityCloner,
mapper: &'a mut dyn EntityMapper,
#[cfg(feature = "bevy_reflect")]
type_registry: Option<&'a crate::reflect::AppTypeRegistry>,
#[cfg(not(feature = "bevy_reflect"))]
#[expect(dead_code)]
type_registry: Option<&'a ()>,
}
impl<'a, 'b> ComponentCloneCtx<'a, 'b> {
/// Create a new instance of `ComponentCloneCtx` that can be passed to component clone handlers.
///
/// # Safety
/// Caller must ensure that:
/// - `component_info` corresponds to the `component_id` in the same world,.
/// - `source_component_ptr` points to a valid component of type represented by `component_id`.
unsafe fn new(
component_id: ComponentId,
source: Entity,
target: Entity,
bundle_scratch_allocator: &'b Bump,
bundle_scratch: &'a mut BundleScratch<'b>,
entities: &'a Entities,
component_info: &'a ComponentInfo,
entity_cloner: &'a mut EntityCloner,
mapper: &'a mut dyn EntityMapper,
#[cfg(feature = "bevy_reflect")] type_registry: Option<&'a crate::reflect::AppTypeRegistry>,
#[cfg(not(feature = "bevy_reflect"))] type_registry: Option<&'a ()>,
) -> Self {
Self {
component_id,
source,
target,
bundle_scratch,
target_component_written: false,
bundle_scratch_allocator,
entities,
mapper,
component_info,
entity_cloner,
type_registry,
}
}
/// Returns true if [`write_target_component`](`Self::write_target_component`) was called before.
pub fn target_component_written(&self) -> bool {
self.target_component_written
}
/// Returns the current source entity.
pub fn source(&self) -> Entity {
self.source
}
/// Returns the current target entity.
pub fn target(&self) -> Entity {
self.target
}
/// Returns the [`ComponentId`] of the component being cloned.
pub fn component_id(&self) -> ComponentId {
self.component_id
}
/// Returns the [`ComponentInfo`] of the component being cloned.
pub fn component_info(&self) -> &ComponentInfo {
self.component_info
}
/// Returns true if the [`EntityCloner`] is configured to recursively clone entities. When this is enabled,
/// entities stored in a cloned entity's [`RelationshipTarget`](crate::relationship::RelationshipTarget) component with
/// [`RelationshipTarget::LINKED_SPAWN`](crate::relationship::RelationshipTarget::LINKED_SPAWN) will also be cloned.
#[inline]
pub fn linked_cloning(&self) -> bool {
self.entity_cloner.linked_cloning
}
/// Returns this context's [`EntityMapper`].
pub fn entity_mapper(&mut self) -> &mut dyn EntityMapper {
self.mapper
}
/// Writes component data to target entity.
///
/// # Panics
/// This will panic if:
/// - Component has already been written once.
/// - Component being written is not registered in the world.
/// - `ComponentId` of component being written does not match expected `ComponentId`.
pub fn write_target_component<C: Component>(&mut self, mut component: C) {
C::visit_entities_mut(&mut component, |entity| {
*entity = self.mapper.get_mapped(*entity);
});
let short_name = disqualified::ShortName::of::<C>();
if self.target_component_written {
panic!("Trying to write component '{short_name}' multiple times")
}
if self
.component_info
.type_id()
.is_none_or(|id| id != TypeId::of::<C>())
{
panic!("TypeId of component '{short_name}' does not match source component TypeId")
};
// SAFETY: the TypeId of self.component_id has been checked to ensure it matches `C`
unsafe {
self.bundle_scratch
.push(self.bundle_scratch_allocator, self.component_id, component);
};
self.target_component_written = true;
}
/// Writes component data to target entity by providing a pointer to source component data.
///
/// # Safety
/// Caller must ensure that the passed in `ptr` references data that corresponds to the type of the source / target [`ComponentId`].
/// `ptr` must also contain data that the written component can "own" (for example, this should not directly copy non-Copy data).
///
/// # Panics
/// This will panic if component has already been written once.
pub unsafe fn write_target_component_ptr(&mut self, ptr: Ptr) {
if self.target_component_written {
panic!("Trying to write component multiple times")
}
let layout = self.component_info.layout();
let target_ptr = self.bundle_scratch_allocator.alloc_layout(layout);
core::ptr::copy_nonoverlapping(ptr.as_ptr(), target_ptr.as_ptr(), layout.size());
self.bundle_scratch
.push_ptr(self.component_id, PtrMut::new(target_ptr));
self.target_component_written = true;
}
/// Writes component data to target entity.
///
/// # Panics
/// This will panic if:
/// - World does not have [`AppTypeRegistry`](`crate::reflect::AppTypeRegistry`).
/// - Component does not implement [`ReflectFromPtr`](bevy_reflect::ReflectFromPtr).
/// - Source component does not have [`TypeId`].
/// - Passed component's [`TypeId`] does not match source component [`TypeId`].
/// - Component has already been written once.
#[cfg(feature = "bevy_reflect")]
pub fn write_target_component_reflect(&mut self, component: Box<dyn bevy_reflect::Reflect>) {
if self.target_component_written {
panic!("Trying to write component multiple times")
}
let source_type_id = self
.component_info
.type_id()
.expect("Source component must have TypeId");
let component_type_id = component.type_id();
if source_type_id != component_type_id {
panic!("Passed component TypeId does not match source component TypeId")
}
let component_layout = self.component_info.layout();
let component_data_ptr = Box::into_raw(component).cast::<u8>();
let target_component_data_ptr =
self.bundle_scratch_allocator.alloc_layout(component_layout);
// SAFETY:
// - target_component_data_ptr and component_data have the same data type.
// - component_data_ptr has layout of component_layout
unsafe {
core::ptr::copy_nonoverlapping(
component_data_ptr,
target_component_data_ptr.as_ptr(),
component_layout.size(),
);
self.bundle_scratch
.push_ptr(self.component_id, PtrMut::new(target_component_data_ptr));
if component_layout.size() > 0 {
// Ensure we don't attempt to deallocate zero-sized components
alloc::alloc::dealloc(component_data_ptr, component_layout);
}
}
self.target_component_written = true;
}
/// Returns [`AppTypeRegistry`](`crate::reflect::AppTypeRegistry`) if it exists in the world.
///
/// NOTE: Prefer this method instead of manually reading the resource from the world.
#[cfg(feature = "bevy_reflect")]
pub fn type_registry(&self) -> Option<&crate::reflect::AppTypeRegistry> {
self.type_registry
}
/// Queues the `entity` to be cloned by the current [`EntityCloner`]
pub fn queue_entity_clone(&mut self, entity: Entity) {
let target = self.entities.reserve_entity();
self.mapper.set_mapped(entity, target);
self.entity_cloner.clone_queue.push_back(entity);
}
}
/// A configuration determining how to clone entities. This can be built using [`EntityCloner::build`], which
/// returns an [`EntityClonerBuilder`].
///
/// After configuration is complete an entity can be cloned using [`Self::clone_entity`].
///
///```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::entity::EntityCloner;
///
/// #[derive(Component, Clone, PartialEq, Eq)]
/// struct A {
/// field: usize,
/// }
///
/// let mut world = World::default();
///
/// let component = A { field: 5 };
///
/// let entity = world.spawn(component.clone()).id();
/// let entity_clone = world.spawn_empty().id();
///
/// EntityCloner::build(&mut world).clone_entity(entity, entity_clone);
///
/// assert!(world.get::<A>(entity_clone).is_some_and(|c| *c == component));
///```
///
/// # Default cloning strategy
/// By default, all types that derive [`Component`] and implement either [`Clone`] or `Reflect` (with `ReflectComponent`) will be cloned
/// (with `Clone`-based implementation preferred in case component implements both).
///
/// It should be noted that if `Component` is implemented manually or if `Clone` implementation is conditional
/// (like when deriving `Clone` for a type with a generic parameter without `Clone` bound),
/// the component will be cloned using the [default cloning strategy](crate::component::ComponentCloneBehavior::global_default_fn).
/// To use `Clone`-based handler ([`ComponentCloneBehavior::clone`]) in this case it should be set manually using one
/// of the methods mentioned in the [Clone Behaviors](#Clone-Behaviors) section
///
/// Here's an example of how to do it using [`clone_behavior`](Component::clone_behavior):
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::component::{StorageType, ComponentCloneBehavior, Mutable};
/// #[derive(Clone)]
/// struct SomeComponent;
///
/// impl Component for SomeComponent {
/// const STORAGE_TYPE: StorageType = StorageType::Table;
/// type Mutability = Mutable;
/// fn clone_behavior() -> ComponentCloneBehavior {
/// ComponentCloneBehavior::clone::<Self>()
/// }
/// }
/// ```
///
/// # Clone Behaviors
/// [`EntityCloner`] clones entities by cloning components using [`ComponentCloneBehavior`], and there are multiple layers
/// to decide which handler to use for which component. The overall hierarchy looks like this (priority from most to least):
/// 1. local overrides using [`EntityClonerBuilder::override_clone_behavior`]
/// 2. component-defined handler using [`Component::clone_behavior`]
/// 3. default handler override using [`EntityClonerBuilder::with_default_clone_fn`].
/// 4. reflect-based or noop default clone handler depending on if `bevy_reflect` feature is enabled or not.
#[derive(Debug)]
pub struct EntityCloner {
filter_allows_components: bool,
filter: HashSet<ComponentId>,
clone_behavior_overrides: HashMap<ComponentId, ComponentCloneBehavior>,
move_components: bool,
linked_cloning: bool,
default_clone_fn: ComponentCloneFn,
clone_queue: VecDeque<Entity>,
}
impl Default for EntityCloner {
fn default() -> Self {
Self {
filter_allows_components: false,
filter: Default::default(),
clone_behavior_overrides: Default::default(),
move_components: false,
linked_cloning: false,
default_clone_fn: ComponentCloneBehavior::global_default_fn(),
clone_queue: Default::default(),
}
}
}
/// An expandable scratch space for defining a dynamic bundle.
struct BundleScratch<'a> {
component_ids: Vec<ComponentId>,
component_ptrs: Vec<PtrMut<'a>>,
}
impl<'a> BundleScratch<'a> {
pub(crate) fn with_capacity(capacity: usize) -> Self {
Self {
component_ids: Vec::with_capacity(capacity),
component_ptrs: Vec::with_capacity(capacity),
}
}
/// Pushes the `ptr` component onto this storage with the given `id` [`ComponentId`].
///
/// # Safety
/// The `id` [`ComponentId`] must match the component `ptr` for whatever [`World`] this scratch will
/// be written to. `ptr` must contain valid uniquely-owned data that matches the type of component referenced
/// in `id`.
pub(crate) unsafe fn push_ptr(&mut self, id: ComponentId, ptr: PtrMut<'a>) {
self.component_ids.push(id);
self.component_ptrs.push(ptr);
}
/// Pushes the `C` component onto this storage with the given `id` [`ComponentId`], using the given `bump` allocator.
///
/// # Safety
/// The `id` [`ComponentId`] must match the component `C` for whatever [`World`] this scratch will
/// be written to.
pub(crate) unsafe fn push<C: Component>(
&mut self,
allocator: &'a Bump,
id: ComponentId,
component: C,
) {
let component_ref = allocator.alloc(component);
self.component_ids.push(id);
self.component_ptrs.push(PtrMut::from(component_ref));
}
/// Writes the scratch components to the given entity in the given world.
///
/// # Safety
/// All [`ComponentId`] values in this instance must come from `world`.
pub(crate) unsafe fn write(
self,
world: &mut World,
entity: Entity,
relationship_hook_insert_mode: RelationshipInsertHookMode,
) {
// SAFETY:
// - All `component_ids` are from the same world as `target` entity
// - All `component_data_ptrs` are valid types represented by `component_ids`
unsafe {
world.entity_mut(entity).insert_by_ids_internal(
&self.component_ids,
self.component_ptrs.into_iter().map(|ptr| ptr.promote()),
relationship_hook_insert_mode,
);
}
}
}
impl EntityCloner {
/// Returns a new [`EntityClonerBuilder`] using the given `world`.
pub fn build(world: &mut World) -> EntityClonerBuilder {
EntityClonerBuilder {
world,
attach_required_components: true,
entity_cloner: EntityCloner::default(),
}
}
/// Returns `true` if this cloner is configured to clone entities referenced in cloned components via [`RelationshipTarget::LINKED_SPAWN`](crate::relationship::RelationshipTarget::LINKED_SPAWN).
/// This will produce "deep" / recursive clones of relationship trees that have "linked spawn".
#[inline]
pub fn linked_cloning(&self) -> bool {
self.linked_cloning
}
/// Clones and inserts components from the `source` entity into the entity mapped by `mapper` from `source` using the stored configuration.
fn clone_entity_internal(
&mut self,
world: &mut World,
source: Entity,
mapper: &mut dyn EntityMapper,
relationship_hook_insert_mode: RelationshipInsertHookMode,
) -> Entity {
let target = mapper.get_mapped(source);
// PERF: reusing allocated space across clones would be more efficient. Consider an allocation model similar to `Commands`.
let bundle_scratch_allocator = Bump::new();
let mut bundle_scratch: BundleScratch;
{
let world = world.as_unsafe_world_cell();
let source_entity = world.get_entity(source).expect("Source entity must exist");
#[cfg(feature = "bevy_reflect")]
// SAFETY: we have unique access to `world`, nothing else accesses the registry at this moment, and we clone
// the registry, which prevents future conflicts.
let app_registry = unsafe {
world
.get_resource::<crate::reflect::AppTypeRegistry>()
.cloned()
};
#[cfg(not(feature = "bevy_reflect"))]
let app_registry = Option::<()>::None;
let archetype = source_entity.archetype();
bundle_scratch = BundleScratch::with_capacity(archetype.component_count());
// SAFETY: no other references to command queue exist
let mut commands = unsafe {
Commands::new_raw_from_entities(world.get_raw_command_queue(), world.entities())
};
for component in archetype.components() {
if !self.is_cloning_allowed(&component) {
continue;
}
let handler = match self.clone_behavior_overrides.get(&component) {
Some(clone_behavior) => clone_behavior.resolve(self.default_clone_fn),
None => world
.components()
.get_info(component)
.map(|info| info.clone_behavior().resolve(self.default_clone_fn))
.unwrap_or(self.default_clone_fn),
};
// SAFETY: This component exists because it is present on the archetype.
let info = unsafe { world.components().get_info_unchecked(component) };
// SAFETY:
// - There are no other mutable references to source entity.
// - `component` is from `source_entity`'s archetype
let source_component_ptr =
unsafe { source_entity.get_by_id(component).debug_checked_unwrap() };
let source_component = SourceComponent {
info,
ptr: source_component_ptr,
};
// SAFETY:
// - `components` and `component` are from the same world
// - `source_component_ptr` is valid and points to the same type as represented by `component`
let mut ctx = unsafe {
ComponentCloneCtx::new(
component,
source,
target,
&bundle_scratch_allocator,
&mut bundle_scratch,
world.entities(),
info,
self,
mapper,
app_registry.as_ref(),
)
};
(handler)(&mut commands, &source_component, &mut ctx);
}
}
world.flush();
if !world.entities.contains(target) {
panic!("Target entity does not exist");
}
if self.move_components {
world
.entity_mut(source)
.remove_by_ids(&bundle_scratch.component_ids);
}
// SAFETY:
// - All `component_ids` are from the same world as `target` entity
// - All `component_data_ptrs` are valid types represented by `component_ids`
unsafe { bundle_scratch.write(world, target, relationship_hook_insert_mode) };
target
}
/// Clones and inserts components from the `source` entity into `target` entity using the stored configuration.
/// If this [`EntityCloner`] has [`EntityCloner::linked_cloning`], then it will recursively spawn entities as defined
/// by [`RelationshipTarget`](crate::relationship::RelationshipTarget) components with
/// [`RelationshipTarget::LINKED_SPAWN`](crate::relationship::RelationshipTarget::LINKED_SPAWN)
#[track_caller]
pub fn clone_entity(&mut self, world: &mut World, source: Entity, target: Entity) {
let mut map = EntityHashMap::<Entity>::new();
map.set_mapped(source, target);
self.clone_entity_mapped(world, source, &mut map);
}
/// Clones and inserts components from the `source` entity into a newly spawned entity using the stored configuration.
/// If this [`EntityCloner`] has [`EntityCloner::linked_cloning`], then it will recursively spawn entities as defined
/// by [`RelationshipTarget`](crate::relationship::RelationshipTarget) components with
/// [`RelationshipTarget::LINKED_SPAWN`](crate::relationship::RelationshipTarget::LINKED_SPAWN)
#[track_caller]
pub fn spawn_clone(&mut self, world: &mut World, source: Entity) -> Entity {
let target = world.spawn_empty().id();
self.clone_entity(world, source, target);
target
}
/// Clones the entity into whatever entity `mapper` chooses for it.
#[track_caller]
pub fn clone_entity_mapped(
&mut self,
world: &mut World,
source: Entity,
mapper: &mut dyn EntityMapper,
) -> Entity {
// All relationships on the root should have their hooks run
let target =
self.clone_entity_internal(world, source, mapper, RelationshipInsertHookMode::Run);
let child_hook_insert_mode = if self.linked_cloning {
// When spawning "linked relationships", we want to ignore hooks for relationships we are spawning, while
// still registering with original relationship targets that are "not linked" to the current recursive spawn.
RelationshipInsertHookMode::RunIfNotLinked
} else {
// If we are not cloning "linked relationships" recursively, then we want any cloned relationship components to
// register themselves with their original relationship target.
RelationshipInsertHookMode::Run
};
loop {
let queued = self.clone_queue.pop_front();
if let Some(queued) = queued {
self.clone_entity_internal(world, queued, mapper, child_hook_insert_mode);
} else {
break;
}
}
target
}
fn is_cloning_allowed(&self, component: &ComponentId) -> bool {
(self.filter_allows_components && self.filter.contains(component))
|| (!self.filter_allows_components && !self.filter.contains(component))
}
}
/// A builder for configuring [`EntityCloner`]. See [`EntityCloner`] for more information.
#[derive(Debug)]
pub struct EntityClonerBuilder<'w> {
world: &'w mut World,
entity_cloner: EntityCloner,
attach_required_components: bool,
}
impl<'w> EntityClonerBuilder<'w> {
/// Internally calls [`EntityCloner::clone_entity`] on the builder's [`World`].
pub fn clone_entity(&mut self, source: Entity, target: Entity) -> &mut Self {
self.entity_cloner.clone_entity(self.world, source, target);
self
}
/// Finishes configuring [`EntityCloner`] returns it.
pub fn finish(self) -> EntityCloner {
self.entity_cloner
}
/// By default, any components allowed/denied through the filter will automatically
/// allow/deny all of their required components.
///
/// This method allows for a scoped mode where any changes to the filter
/// will not involve required components.
pub fn without_required_components(
&mut self,
builder: impl FnOnce(&mut EntityClonerBuilder),
) -> &mut Self {
self.attach_required_components = false;
builder(self);
self.attach_required_components = true;
self
}
/// Sets the default clone function to use.
pub fn with_default_clone_fn(&mut self, clone_fn: ComponentCloneFn) -> &mut Self {
self.entity_cloner.default_clone_fn = clone_fn;
self
}
/// Sets whether the cloner should remove any components that were cloned,
/// effectively moving them from the source entity to the target.
///
/// This is disabled by default.
///
/// The setting only applies to components that are allowed through the filter
/// at the time [`EntityClonerBuilder::clone_entity`] is called.
pub fn move_components(&mut self, enable: bool) -> &mut Self {
self.entity_cloner.move_components = enable;
self
}
/// Adds all components of the bundle to the list of components to clone.
///
/// Note that all components are allowed by default, to clone only explicitly allowed components make sure to call
/// [`deny_all`](`Self::deny_all`) before calling any of the `allow` methods.
pub fn allow<T: Bundle>(&mut self) -> &mut Self {
let bundle = self.world.register_bundle::<T>();
let ids = bundle.explicit_components().to_owned();
for id in ids {
self.filter_allow(id);
}
self
}
/// Extends the list of components to clone.
///
/// Note that all components are allowed by default, to clone only explicitly allowed components make sure to call
/// [`deny_all`](`Self::deny_all`) before calling any of the `allow` methods.
pub fn allow_by_ids(&mut self, ids: impl IntoIterator<Item = ComponentId>) -> &mut Self {
for id in ids {
self.filter_allow(id);
}
self
}
/// Extends the list of components to clone using [`TypeId`]s.
///
/// Note that all components are allowed by default, to clone only explicitly allowed components make sure to call
/// [`deny_all`](`Self::deny_all`) before calling any of the `allow` methods.
pub fn allow_by_type_ids(&mut self, ids: impl IntoIterator<Item = TypeId>) -> &mut Self {
for type_id in ids {
if let Some(id) = self.world.components().get_id(type_id) {
self.filter_allow(id);
}
}
self
}
/// Resets the filter to allow all components to be cloned.
pub fn allow_all(&mut self) -> &mut Self {
self.entity_cloner.filter_allows_components = false;
self.entity_cloner.filter.clear();
self
}
/// Disallows all components of the bundle from being cloned.
pub fn deny<T: Bundle>(&mut self) -> &mut Self {
let bundle = self.world.register_bundle::<T>();
let ids = bundle.explicit_components().to_owned();
for id in ids {
self.filter_deny(id);
}
self
}
/// Extends the list of components that shouldn't be cloned.
pub fn deny_by_ids(&mut self, ids: impl IntoIterator<Item = ComponentId>) -> &mut Self {
for id in ids {
self.filter_deny(id);
}
self
}
/// Extends the list of components that shouldn't be cloned by type ids.
pub fn deny_by_type_ids(&mut self, ids: impl IntoIterator<Item = TypeId>) -> &mut Self {
for type_id in ids {
if let Some(id) = self.world.components().get_id(type_id) {
self.filter_deny(id);
}
}
self
}
/// Sets the filter to deny all components.
pub fn deny_all(&mut self) -> &mut Self {
self.entity_cloner.filter_allows_components = true;
self.entity_cloner.filter.clear();
self
}
/// Overrides the [`ComponentCloneBehavior`] for a component in this builder.
/// This handler will be used to clone the component instead of the global one defined by the [`EntityCloner`].
///
/// See [Handlers section of `EntityClonerBuilder`](EntityClonerBuilder#handlers) to understand how this affects handler priority.
pub fn override_clone_behavior<T: Component>(
&mut self,
clone_behavior: ComponentCloneBehavior,
) -> &mut Self {
if let Some(id) = self.world.components().component_id::<T>() {
self.entity_cloner
.clone_behavior_overrides
.insert(id, clone_behavior);
}
self
}
/// Overrides the [`ComponentCloneBehavior`] for a component with the given `component_id` in this builder.
/// This handler will be used to clone the component instead of the global one defined by the [`EntityCloner`].
///
/// See [Handlers section of `EntityClonerBuilder`](EntityClonerBuilder#handlers) to understand how this affects handler priority.
pub fn override_clone_behavior_with_id(
&mut self,
component_id: ComponentId,
clone_behavior: ComponentCloneBehavior,
) -> &mut Self {
self.entity_cloner
.clone_behavior_overrides
.insert(component_id, clone_behavior);
self
}
/// Removes a previously set override of [`ComponentCloneBehavior`] for a component in this builder.
pub fn remove_clone_behavior_override<T: Component>(&mut self) -> &mut Self {
if let Some(id) = self.world.components().component_id::<T>() {
self.entity_cloner.clone_behavior_overrides.remove(&id);
}
self
}
/// Removes a previously set override of [`ComponentCloneBehavior`] for a given `component_id` in this builder.
pub fn remove_clone_behavior_override_with_id(
&mut self,
component_id: ComponentId,
) -> &mut Self {
self.entity_cloner
.clone_behavior_overrides
.remove(&component_id);
self
}
/// When true this cloner will be configured to clone entities referenced in cloned components via [`RelationshipTarget::LINKED_SPAWN`](crate::relationship::RelationshipTarget::LINKED_SPAWN).
/// This will produce "deep" / recursive clones of relationship trees that have "linked spawn".
pub fn linked_cloning(&mut self, linked_cloning: bool) -> &mut Self {
self.entity_cloner.linked_cloning = linked_cloning;
self
}
/// Helper function that allows a component through the filter.
fn filter_allow(&mut self, id: ComponentId) {
if self.entity_cloner.filter_allows_components {
self.entity_cloner.filter.insert(id);
} else {
self.entity_cloner.filter.remove(&id);
}
if self.attach_required_components {
if let Some(info) = self.world.components().get_info(id) {
for required_id in info.required_components().iter_ids() {
if self.entity_cloner.filter_allows_components {
self.entity_cloner.filter.insert(required_id);
} else {
self.entity_cloner.filter.remove(&required_id);
}
}
}
}
}
/// Helper function that disallows a component through the filter.
fn filter_deny(&mut self, id: ComponentId) {
if self.entity_cloner.filter_allows_components {
self.entity_cloner.filter.remove(&id);
} else {
self.entity_cloner.filter.insert(id);
}
if self.attach_required_components {
if let Some(info) = self.world.components().get_info(id) {
for required_id in info.required_components().iter_ids() {
if self.entity_cloner.filter_allows_components {
self.entity_cloner.filter.remove(&required_id);
} else {
self.entity_cloner.filter.insert(required_id);
}
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::ComponentCloneCtx;
use crate::{
component::{Component, ComponentCloneBehavior, ComponentDescriptor, StorageType},
entity::{hash_map::EntityHashMap, Entity, EntityCloner, SourceComponent},
prelude::{ChildOf, Children, Resource},
reflect::{AppTypeRegistry, ReflectComponent, ReflectFromWorld},
system::Commands,
world::{FromWorld, World},
};
use alloc::vec::Vec;
use bevy_ptr::OwningPtr;
use bevy_reflect::Reflect;
use core::marker::PhantomData;
use core::{alloc::Layout, ops::Deref};
#[cfg(feature = "bevy_reflect")]
mod reflect {
use super::*;
use crate::{
component::{Component, ComponentCloneBehavior},
entity::{EntityCloner, SourceComponent},
reflect::{AppTypeRegistry, ReflectComponent, ReflectFromWorld},
system::Commands,
};
use alloc::vec;
use bevy_reflect::{std_traits::ReflectDefault, FromType, Reflect, ReflectFromPtr};
#[test]
fn clone_entity_using_reflect() {
#[derive(Component, Reflect, Clone, PartialEq, Eq)]
#[reflect(Component)]
struct A {
field: usize,
}
let mut world = World::default();
world.init_resource::<AppTypeRegistry>();
let registry = world.get_resource::<AppTypeRegistry>().unwrap();
registry.write().register::<A>();
world.register_component::<A>();
let component = A { field: 5 };
let e = world.spawn(component.clone()).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.override_clone_behavior::<A>(ComponentCloneBehavior::reflect())
.clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
}
#[test]
fn clone_entity_using_reflect_all_paths() {
#[derive(PartialEq, Eq, Default, Debug)]
struct NotClone;
// `reflect_clone`-based fast path
#[derive(Component, Reflect, PartialEq, Eq, Default, Debug)]
#[reflect(from_reflect = false)]
struct A {
field: usize,
field2: Vec<usize>,
}
// `ReflectDefault`-based fast path
#[derive(Component, Reflect, PartialEq, Eq, Default, Debug)]
#[reflect(Default)]
#[reflect(from_reflect = false)]
struct B {
field: usize,
field2: Vec<usize>,
#[reflect(ignore)]
ignored: NotClone,
}
// `ReflectFromReflect`-based fast path
#[derive(Component, Reflect, PartialEq, Eq, Default, Debug)]
struct C {
field: usize,
field2: Vec<usize>,
#[reflect(ignore)]
ignored: NotClone,
}
// `ReflectFromWorld`-based fast path
#[derive(Component, Reflect, PartialEq, Eq, Default, Debug)]
#[reflect(FromWorld)]
#[reflect(from_reflect = false)]
struct D {
field: usize,
field2: Vec<usize>,
#[reflect(ignore)]
ignored: NotClone,
}
let mut world = World::default();
world.init_resource::<AppTypeRegistry>();
let registry = world.get_resource::<AppTypeRegistry>().unwrap();
registry.write().register::<(A, B, C, D)>();
let a_id = world.register_component::<A>();
let b_id = world.register_component::<B>();
let c_id = world.register_component::<C>();
let d_id = world.register_component::<D>();
let component_a = A {
field: 5,
field2: vec![1, 2, 3, 4, 5],
};
let component_b = B {
field: 5,
field2: vec![1, 2, 3, 4, 5],
ignored: NotClone,
};
let component_c = C {
field: 6,
field2: vec![1, 2, 3, 4, 5],
ignored: NotClone,
};
let component_d = D {
field: 7,
field2: vec![1, 2, 3, 4, 5],
ignored: NotClone,
};
let e = world
.spawn((component_a, component_b, component_c, component_d))
.id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.override_clone_behavior_with_id(a_id, ComponentCloneBehavior::reflect())
.override_clone_behavior_with_id(b_id, ComponentCloneBehavior::reflect())
.override_clone_behavior_with_id(c_id, ComponentCloneBehavior::reflect())
.override_clone_behavior_with_id(d_id, ComponentCloneBehavior::reflect())
.clone_entity(e, e_clone);
assert_eq!(world.get::<A>(e_clone), Some(world.get::<A>(e).unwrap()));
assert_eq!(world.get::<B>(e_clone), Some(world.get::<B>(e).unwrap()));
assert_eq!(world.get::<C>(e_clone), Some(world.get::<C>(e).unwrap()));
assert_eq!(world.get::<D>(e_clone), Some(world.get::<D>(e).unwrap()));
}
#[test]
fn read_source_component_reflect_should_return_none_on_invalid_reflect_from_ptr() {
#[derive(Component, Reflect)]
struct A;
#[derive(Component, Reflect)]
struct B;
fn test_handler(
_commands: &mut Commands,
source: &SourceComponent,
ctx: &mut ComponentCloneCtx,
) {
let registry = ctx.type_registry().unwrap();
assert!(source.read_reflect(&registry.read()).is_none());
}
let mut world = World::default();
world.init_resource::<AppTypeRegistry>();
let registry = world.get_resource::<AppTypeRegistry>().unwrap();
{
let mut registry = registry.write();
registry.register::<A>();
registry
.get_mut(core::any::TypeId::of::<A>())
.unwrap()
.insert(<ReflectFromPtr as FromType<B>>::from_type());
}
let e = world.spawn(A).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.override_clone_behavior::<A>(ComponentCloneBehavior::Custom(test_handler))
.clone_entity(e, e_clone);
}
#[test]
fn clone_entity_specialization() {
#[derive(Component, Reflect, PartialEq, Eq)]
#[reflect(Component)]
struct A {
field: usize,
}
impl Clone for A {
fn clone(&self) -> Self {
Self { field: 10 }
}
}
let mut world = World::default();
world.init_resource::<AppTypeRegistry>();
let registry = world.get_resource::<AppTypeRegistry>().unwrap();
registry.write().register::<A>();
let component = A { field: 5 };
let e = world.spawn(component.clone()).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world).clone_entity(e, e_clone);
assert!(world
.get::<A>(e_clone)
.is_some_and(|comp| *comp == A { field: 10 }));
}
#[test]
fn clone_entity_using_reflect_should_skip_without_panic() {
// Not reflected
#[derive(Component, PartialEq, Eq, Default, Debug)]
struct A;
// No valid type data and not `reflect_clone`-able
#[derive(Component, Reflect, PartialEq, Eq, Default, Debug)]
#[reflect(Component)]
#[reflect(from_reflect = false)]
struct B(#[reflect(ignore)] PhantomData<()>);
let mut world = World::default();
// No AppTypeRegistry
let e = world.spawn((A, B(Default::default()))).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.override_clone_behavior::<A>(ComponentCloneBehavior::reflect())
.override_clone_behavior::<B>(ComponentCloneBehavior::reflect())
.clone_entity(e, e_clone);
assert_eq!(world.get::<A>(e_clone), None);
assert_eq!(world.get::<B>(e_clone), None);
// With AppTypeRegistry
world.init_resource::<AppTypeRegistry>();
let registry = world.get_resource::<AppTypeRegistry>().unwrap();
registry.write().register::<B>();
let e = world.spawn((A, B(Default::default()))).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world).clone_entity(e, e_clone);
assert_eq!(world.get::<A>(e_clone), None);
assert_eq!(world.get::<B>(e_clone), None);
}
}
#[test]
fn clone_entity_using_clone() {
#[derive(Component, Clone, PartialEq, Eq)]
struct A {
field: usize,
}
let mut world = World::default();
let component = A { field: 5 };
let e = world.spawn(component.clone()).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world).clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
}
#[test]
fn clone_entity_with_allow_filter() {
#[derive(Component, Clone, PartialEq, Eq)]
struct A {
field: usize,
}
#[derive(Component, Clone)]
struct B;
let mut world = World::default();
let component = A { field: 5 };
let e = world.spawn((component.clone(), B)).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny_all()
.allow::<A>()
.clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
assert!(world.get::<B>(e_clone).is_none());
}
#[test]
fn clone_entity_with_deny_filter() {
#[derive(Component, Clone, PartialEq, Eq)]
struct A {
field: usize,
}
#[derive(Component, Clone)]
struct B;
#[derive(Component, Clone)]
struct C;
let mut world = World::default();
let component = A { field: 5 };
let e = world.spawn((component.clone(), B, C)).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny::<B>()
.clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
assert!(world.get::<B>(e_clone).is_none());
assert!(world.get::<C>(e_clone).is_some());
}
#[test]
fn clone_entity_with_override_allow_filter() {
#[derive(Component, Clone, PartialEq, Eq)]
struct A {
field: usize,
}
#[derive(Component, Clone)]
struct B;
#[derive(Component, Clone)]
struct C;
let mut world = World::default();
let component = A { field: 5 };
let e = world.spawn((component.clone(), B, C)).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny_all()
.allow::<A>()
.allow::<B>()
.allow::<C>()
.deny::<B>()
.clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
assert!(world.get::<B>(e_clone).is_none());
assert!(world.get::<C>(e_clone).is_some());
}
#[test]
fn clone_entity_with_override_bundle() {
#[derive(Component, Clone, PartialEq, Eq)]
struct A {
field: usize,
}
#[derive(Component, Clone)]
struct B;
#[derive(Component, Clone)]
struct C;
let mut world = World::default();
let component = A { field: 5 };
let e = world.spawn((component.clone(), B, C)).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny_all()
.allow::<(A, B, C)>()
.deny::<(B, C)>()
.clone_entity(e, e_clone);
assert!(world.get::<A>(e_clone).is_some_and(|c| *c == component));
assert!(world.get::<B>(e_clone).is_none());
assert!(world.get::<C>(e_clone).is_none());
}
#[test]
fn clone_entity_with_required_components() {
#[derive(Component, Clone, PartialEq, Debug)]
#[require(B)]
struct A;
#[derive(Component, Clone, PartialEq, Debug, Default)]
#[require(C(|| C(5)))]
struct B;
#[derive(Component, Clone, PartialEq, Debug)]
struct C(u32);
let mut world = World::default();
let e = world.spawn(A).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny_all()
.allow::<B>()
.clone_entity(e, e_clone);
assert_eq!(world.entity(e_clone).get::<A>(), None);
assert_eq!(world.entity(e_clone).get::<B>(), Some(&B));
assert_eq!(world.entity(e_clone).get::<C>(), Some(&C(5)));
}
#[test]
fn clone_entity_with_default_required_components() {
#[derive(Component, Clone, PartialEq, Debug)]
#[require(B)]
struct A;
#[derive(Component, Clone, PartialEq, Debug, Default)]
#[require(C(|| C(5)))]
struct B;
#[derive(Component, Clone, PartialEq, Debug)]
struct C(u32);
let mut world = World::default();
let e = world.spawn((A, C(0))).id();
let e_clone = world.spawn_empty().id();
EntityCloner::build(&mut world)
.deny_all()
.without_required_components(|builder| {
builder.allow::<A>();
})
.clone_entity(e, e_clone);
assert_eq!(world.entity(e_clone).get::<A>(), Some(&A));
assert_eq!(world.entity(e_clone).get::<B>(), Some(&B));
assert_eq!(world.entity(e_clone).get::<C>(), Some(&C(5)));
}
#[test]
fn clone_entity_with_dynamic_components() {
const COMPONENT_SIZE: usize = 10;
fn test_handler(
_commands: &mut Commands,
source: &SourceComponent,
ctx: &mut ComponentCloneCtx,
) {
// SAFETY: the passed in ptr corresponds to copy-able data that matches the type of the source / target component
unsafe {
ctx.write_target_component_ptr(source.ptr());
}
}
let mut world = World::default();
let layout = Layout::array::<u8>(COMPONENT_SIZE).unwrap();
// SAFETY:
// - No drop command is required
// - The component will store [u8; COMPONENT_SIZE], which is Send + Sync
let descriptor = unsafe {
ComponentDescriptor::new_with_layout(
"DynamicComp",
StorageType::Table,
layout,
None,
true,
ComponentCloneBehavior::Custom(test_handler),
)
};
let component_id = world.register_component_with_descriptor(descriptor);
let mut entity = world.spawn_empty();
let data = [5u8; COMPONENT_SIZE];
// SAFETY:
// - ptr points to data represented by component_id ([u8; COMPONENT_SIZE])
// - component_id is from the same world as entity
OwningPtr::make(data, |ptr| unsafe {
entity.insert_by_id(component_id, ptr);
});
let entity = entity.id();
let entity_clone = world.spawn_empty().id();
EntityCloner::build(&mut world).clone_entity(entity, entity_clone);
let ptr = world.get_by_id(entity, component_id).unwrap();
let clone_ptr = world.get_by_id(entity_clone, component_id).unwrap();
// SAFETY: ptr and clone_ptr store component represented by [u8; COMPONENT_SIZE]
unsafe {
assert_eq!(
core::slice::from_raw_parts(ptr.as_ptr(), COMPONENT_SIZE),
core::slice::from_raw_parts(clone_ptr.as_ptr(), COMPONENT_SIZE),
);
}
}
#[test]
fn recursive_clone() {
let mut world = World::new();
let root = world.spawn_empty().id();
let child1 = world.spawn(ChildOf { parent: root }).id();
let grandchild = world.spawn(ChildOf { parent: child1 }).id();
let child2 = world.spawn(ChildOf { parent: root }).id();
let clone_root = world.spawn_empty().id();
EntityCloner::build(&mut world)
.linked_cloning(true)
.clone_entity(root, clone_root);
let root_children = world
.entity(clone_root)
.get::<Children>()
.unwrap()
.iter()
.cloned()
.collect::<Vec<_>>();
assert!(root_children.iter().all(|e| *e != child1 && *e != child2));
assert_eq!(root_children.len(), 2);
let child1_children = world.entity(root_children[0]).get::<Children>().unwrap();
assert_eq!(child1_children.len(), 1);
assert_ne!(child1_children[0], grandchild);
assert!(world.entity(root_children[1]).get::<Children>().is_none());
assert_eq!(
world.entity(root).get::<Children>().unwrap().deref(),
&[child1, child2]
);
}
#[test]
fn clone_with_reflect_from_world() {
#[derive(Component, Reflect, PartialEq, Eq, Debug)]
#[reflect(Component, FromWorld, from_reflect = false)]
struct SomeRef(
#[entities] Entity,
// We add an ignored field here to ensure `reflect_clone` fails and `FromWorld` is used
#[reflect(ignore)] PhantomData<()>,
);
#[derive(Resource)]
struct FromWorldCalled(bool);
impl FromWorld for SomeRef {
fn from_world(world: &mut World) -> Self {
world.insert_resource(FromWorldCalled(true));
SomeRef(Entity::PLACEHOLDER, Default::default())
}
}
let mut world = World::new();
let registry = AppTypeRegistry::default();
registry.write().register::<SomeRef>();
world.insert_resource(registry);
let a = world.spawn_empty().id();
let b = world.spawn_empty().id();
let c = world.spawn(SomeRef(a, Default::default())).id();
let d = world.spawn_empty().id();
let mut map = EntityHashMap::<Entity>::new();
map.insert(a, b);
map.insert(c, d);
let cloned = EntityCloner::default().clone_entity_mapped(&mut world, c, &mut map);
assert_eq!(
*world.entity(cloned).get::<SomeRef>().unwrap(),
SomeRef(b, Default::default())
);
assert!(world.resource::<FromWorldCalled>().0);
}
}