bevy/crates/bevy_pbr/src/render/clustered_forward.wgsl
Patrick Walton ad6872275f
Rename "point light" to "clusterable object" in cluster contexts. (#13654)
We want to use the clustering infrastructure for light probes and decals
as well, not just point lights. This patch builds on top of #13640 and
performs the rename.

To make this series easier to review, this patch makes no code changes.
Only identifiers and comments are modified.

## Migration Guide

* In the PBR shaders, `point_lights` is now known as
`clusterable_objects`, `PointLight` is now known as `ClusterableObject`,
and `cluster_light_index_lists` is now known as
`clusterable_object_index_lists`.
2024-06-04 11:01:13 +00:00

127 lines
5.3 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::clustered_forward
#import bevy_pbr::{
mesh_view_bindings as bindings,
utils::rand_f,
}
#import bevy_render::{
color_operations::hsv_to_rgb,
maths::PI_2,
}
// NOTE: Keep in sync with bevy_pbr/src/light.rs
fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 {
var z_slice: u32 = 0u;
if is_orthographic {
// NOTE: view_z is correct in the orthographic case
z_slice = u32(floor((view_z - bindings::lights.cluster_factors.z) * bindings::lights.cluster_factors.w));
} else {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
z_slice = u32(log(-view_z) * bindings::lights.cluster_factors.z - bindings::lights.cluster_factors.w + 1.0);
}
// NOTE: We use min as we may limit the far z plane used for clustering to be closer than
// the furthest thing being drawn. This means that we need to limit to the maximum cluster.
return min(z_slice, bindings::lights.cluster_dimensions.z - 1u);
}
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32, is_orthographic: bool) -> u32 {
let xy = vec2<u32>(floor((frag_coord - bindings::view.viewport.xy) * bindings::lights.cluster_factors.xy));
let z_slice = view_z_to_z_slice(view_z, is_orthographic);
// NOTE: Restricting cluster index to avoid undefined behavior when accessing uniform buffer
// arrays based on the cluster index.
return min(
(xy.y * bindings::lights.cluster_dimensions.x + xy.x) * bindings::lights.cluster_dimensions.z + z_slice,
bindings::lights.cluster_dimensions.w - 1u
);
}
// this must match CLUSTER_COUNT_SIZE in light.rs
const CLUSTER_COUNT_SIZE = 9u;
fn unpack_offset_and_counts(cluster_index: u32) -> vec3<u32> {
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
return bindings::cluster_offsets_and_counts.data[cluster_index].xyz;
#else
let offset_and_counts = bindings::cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)];
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
// [ offset | point light count | spot light count ]
return vec3<u32>(
(offset_and_counts >> (CLUSTER_COUNT_SIZE * 2u)) & ((1u << (32u - (CLUSTER_COUNT_SIZE * 2u))) - 1u),
(offset_and_counts >> CLUSTER_COUNT_SIZE) & ((1u << CLUSTER_COUNT_SIZE) - 1u),
offset_and_counts & ((1u << CLUSTER_COUNT_SIZE) - 1u),
);
#endif
}
fn get_clusterable_object_id(index: u32) -> u32 {
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
return bindings::clusterable_object_index_lists.data[index];
#else
// The index is correct but in clusterable_object_index_lists we pack 4 u8s into a u32
// This means the index into clusterable_object_index_lists is index / 4
let indices = bindings::clusterable_object_index_lists.data[index >> 4u][(index >> 2u) &
((1u << 2u) - 1u)];
// And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index
return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u);
#endif
}
fn cluster_debug_visualization(
input_color: vec4<f32>,
view_z: f32,
is_orthographic: bool,
offset_and_counts: vec3<u32>,
cluster_index: u32,
) -> vec4<f32> {
var output_color = input_color;
// Cluster allocation debug (using 'over' alpha blending)
#ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES
// NOTE: This debug mode visualises the z-slices
let cluster_overlay_alpha = 0.1;
var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic);
// A hack to make the colors alternate a bit more
if (z_slice & 1u) == 1u {
z_slice = z_slice + bindings::lights.cluster_dimensions.z / 2u;
}
let slice_color = hsv_to_rgb(
f32(z_slice) / f32(bindings::lights.cluster_dimensions.z + 1u) * PI_2,
1.0,
0.5
);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY
// NOTE: This debug mode visualises the number of clusterable objects within
// the cluster that contains the fragment. It shows a sort of cluster
// complexity measure.
let cluster_overlay_alpha = 0.1;
let max_complexity_per_cluster = 64.0;
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r + cluster_overlay_alpha *
smoothStep(
0.0,
max_complexity_per_cluster,
f32(offset_and_counts[1] + offset_and_counts[2]));
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g + cluster_overlay_alpha *
(1.0 - smoothStep(
0.0,
max_complexity_per_cluster,
f32(offset_and_counts[1] + offset_and_counts[2])));
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
// NOTE: Visualizes the cluster to which the fragment belongs
let cluster_overlay_alpha = 0.1;
var rng = cluster_index;
let cluster_color = hsv_to_rgb(rand_f(&rng) * PI_2, 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
return output_color;
}