 1ba7429371
			
		
	
	
		1ba7429371
		
	
	
	
	
		
			
			# Objective Provide a starting point for #3951, or a partial solution. Providing a few comment blocks to discuss, and hopefully find better one in the process. ## Solution Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less. ## Changelog - Moved some existing comments from main() functions in the 2d examples to the file header level - Wrote some more comment blocks for most other 2d examples TODO: - [x] 2d/sprite_sheet, wasnt able to come up with something good yet - [x] all other example groups... Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed. I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please.
		
			
				
	
	
		
			99 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Illustrates how to scale an object in each direction.
 | |
| 
 | |
| use bevy::math::Vec3Swizzles;
 | |
| use bevy::prelude::*;
 | |
| use std::f32::consts::PI;
 | |
| 
 | |
| // Define a component to keep information for the scaled object.
 | |
| #[derive(Component)]
 | |
| struct Scaling {
 | |
|     scale_direction: Vec3,
 | |
|     scale_speed: f32,
 | |
|     max_element_size: f32,
 | |
|     min_element_size: f32,
 | |
| }
 | |
| 
 | |
| // Implement a simple initialisation.
 | |
| impl Scaling {
 | |
|     fn new() -> Self {
 | |
|         Scaling {
 | |
|             scale_direction: Vec3::X,
 | |
|             scale_speed: 2.0,
 | |
|             max_element_size: 5.0,
 | |
|             min_element_size: 1.0,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins(DefaultPlugins)
 | |
|         .add_startup_system(setup)
 | |
|         .add_system(change_scale_direction)
 | |
|         .add_system(scale_cube)
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| // Startup system to setup the scene and spawn all relevant entities.
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     mut materials: ResMut<Assets<StandardMaterial>>,
 | |
| ) {
 | |
|     // Spawn a cube to scale.
 | |
|     commands
 | |
|         .spawn_bundle(PbrBundle {
 | |
|             mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
 | |
|             material: materials.add(Color::WHITE.into()),
 | |
|             transform: Transform::from_rotation(Quat::from_rotation_y(PI / 4.0)),
 | |
|             ..Default::default()
 | |
|         })
 | |
|         .insert(Scaling::new());
 | |
| 
 | |
|     // Spawn a camera looking at the entities to show what's happening in this example.
 | |
|     commands.spawn_bundle(PerspectiveCameraBundle {
 | |
|         transform: Transform::from_xyz(0.0, 10.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
 | |
|         ..Default::default()
 | |
|     });
 | |
| 
 | |
|     // Add a light source for better 3d visibility.
 | |
|     commands.spawn_bundle(PointLightBundle {
 | |
|         transform: Transform::from_translation(Vec3::ONE * 3.0),
 | |
|         ..Default::default()
 | |
|     });
 | |
| }
 | |
| 
 | |
| // This system will check if a scaled entity went above or below the entities scaling bounds
 | |
| // and change the direction of the scaling vector.
 | |
| fn change_scale_direction(mut cubes: Query<(&mut Transform, &mut Scaling)>) {
 | |
|     for (mut transform, mut cube) in cubes.iter_mut() {
 | |
|         // If an entity scaled beyond the maximum of its size in any dimension
 | |
|         // the scaling vector is flipped so the scaling is gradually reverted.
 | |
|         // Additionally, to ensure the condition does not trigger again we floor the elements to
 | |
|         // their next full value, which should be max_element_size at max.
 | |
|         if transform.scale.max_element() > cube.max_element_size {
 | |
|             cube.scale_direction *= -1.0;
 | |
|             transform.scale = transform.scale.floor();
 | |
|         }
 | |
|         // If an entity scaled beyond the minimum of its size in any dimension
 | |
|         // the scaling vector is also flipped.
 | |
|         // Additionally the Values are ceiled to be min_element_size at least
 | |
|         // and the scale direction is flipped.
 | |
|         // This way the entity will change the dimension in which it is scaled any time it
 | |
|         // reaches its min_element_size.
 | |
|         if transform.scale.min_element() < cube.min_element_size {
 | |
|             cube.scale_direction *= -1.0;
 | |
|             transform.scale = transform.scale.ceil();
 | |
|             cube.scale_direction = cube.scale_direction.zxy();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // This system will scale any entity with assigned Scaling in each direction
 | |
| // by cycling through the directions to scale.
 | |
| fn scale_cube(mut cubes: Query<(&mut Transform, &Scaling)>, timer: Res<Time>) {
 | |
|     for (mut transform, cube) in cubes.iter_mut() {
 | |
|         transform.scale += cube.scale_direction * cube.scale_speed * timer.delta_seconds();
 | |
|     }
 | |
| }
 |