![]() # Objective The objective of this PR is to enable Components to use their `MapEntities` implementation for `Component::map_entities`. With the improvements to the entity mapping system, there is definitely a huge reduction in boilerplate. However, especially since `(Entity)HashMap<..>` doesn't implement `MapEntities` (I presume because the lack of specialization in rust makes `HashMap<Entity|X, Entity|X>` complicated), when somebody has types that contain these hashmaps they can't use this approach. More so, we can't even depend on the previous implementation, since `Component::map_entities` is used instead of `MapEntities::map_entities`. Outside of implementing `Component `and `Component::map_entities` on these types directly, the only path forward is to create a custom type to wrap the hashmaps and implement map entities on that, or split these components into a wrapper type that implement `Component`, and an inner type that implements `MapEntities`. ## Current Solution The solution was to allow adding `#[component(map_entities)]` on the component. By default this will defer to the `MapEntities` implementation. ```rust #[derive(Component)] #[component(map_entities)] struct Inventory { items: HashMap<Entity, usize> } impl MapEntities for Inventory { fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) { self.items = self.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } } ``` You can use `#[component(map_entities = <function path>)]` instead to substitute other code in for components. This function can also include generics, but sso far I haven't been able to find a case where they are needed. ```rust #[derive(Component)] #[component(map_entities = map_the_map)] // Also works #[component(map_entities = map_the_map::<T,_>)] struct Inventory<T> { items: HashMap<Entity, T> } fn map_the_map<T, M: EntityMapper>(inv: &mut Inventory<T>, entity_mapper: &mut M) { inv.items = inv.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } ``` The idea is that with the previous changes to MapEntities, MapEntities is implemented more for entity collections than for Components. If you have a component that makes sense as both, `#[component(map_entities)]` would work great, while otherwise a component can use `#[component(map_entities = <function>)]` to change the behavior of `Component::map_entities` without opening up the component type to be included in other components. ## (Original Solution if you want to follow the PR) The solution was to allow adding `#[component(entities)]` on the component itself to defer to the `MapEntities` implementation ```rust #[derive(Component)] #[component(entities)] struct Inventory { items: HashMap<Entity, usize> } impl MapEntities for Inventory { fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) { self.items = self.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } } ``` ## Testing I tested this by patching my local changes into my own bevy project. I had a system that loads a scene file and executes some logic with a Component that contains a `HashMap<Entity, UVec2>`, and it panics when Entity is not found from another query. Since the 0.16 update this system has reliably panicked upon attempting to the load the scene. After patching my code in, I added `#[component(entities)]` to this component, and I was able to successfully load the scene. Additionally, I wrote a doc test. ## Call-outs ### Relationships This overrules the default mapping of relationship fields. Anything else seemed more problematic, as you'd have inconsistent behavior between `MapEntities` and `Component`. |
||
---|---|---|
.cargo | ||
.github | ||
assets | ||
benches | ||
crates | ||
docs | ||
docs-rs | ||
docs-template | ||
errors | ||
examples | ||
release-content | ||
src | ||
tests | ||
tests-integration/simple-ecs-test | ||
tools | ||
.gitattributes | ||
.gitignore | ||
Cargo.toml | ||
clippy.toml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
CREDITS.md | ||
deny.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
rustfmt.toml | ||
typos.toml |
What is Bevy?
Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!
WARNING
Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.
MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.
Design Goals
- Capable: Offer a complete 2D and 3D feature set
- Simple: Easy for newbies to pick up, but infinitely flexible for power users
- Data Focused: Data-oriented architecture using the Entity Component System paradigm
- Modular: Use only what you need. Replace what you don't like
- Fast: App logic should run quickly, and when possible, in parallel
- Productive: Changes should compile quickly ... waiting isn't fun
About
- Features: A quick overview of Bevy's features.
- News: A development blog that covers our progress, plans and shiny new features.
Docs
- Quick Start Guide: Bevy's official Quick Start Guide. The best place to start learning Bevy.
- Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
- Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
- Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.
Community
Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.
- Discord: Bevy's official discord server.
- Reddit: Bevy's official subreddit.
- GitHub Discussions: The best place for questions about Bevy, answered right here!
- Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.
Contributing
If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!
For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!
Getting Started
We recommend checking out the Quick Start Guide for a brief introduction.
Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:
# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout
To draw a window with standard functionality enabled, use:
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.run();
}
Fast Compiles
Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.
Bevy Cargo Features
This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.
Thanks
Bevy is the result of the hard work of many people. A huge thanks to all Bevy contributors, the many open source projects that have come before us, the Rust gamedev ecosystem, and the many libraries we build on.
A huge thanks to Bevy's generous sponsors. Bevy will always be free and open source, but it isn't free to make. Please consider sponsoring our work if you like what we're building.
This project is tested with BrowserStack.
License
Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:
- MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.
Some of the engine's code carries additional copyright notices and license terms due to their external origins.
These are generally BSD-like, but exact details vary by crate:
If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed.
The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms.
The license field of each crate will also reflect this.
For example, bevy_mikktspace
has code under the Zlib license (as well as a copyright notice when choosing the MIT license).
The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.
Your contributions
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.