
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
246 lines
8.0 KiB
Rust
246 lines
8.0 KiB
Rust
//! A compute shader that simulates Conway's Game of Life.
|
|
//!
|
|
//! Compute shaders use the GPU for computing arbitrary information, that may be independent of what
|
|
//! is rendered to the screen.
|
|
|
|
use bevy::{
|
|
prelude::*,
|
|
render::{
|
|
extract_resource::{ExtractResource, ExtractResourcePlugin},
|
|
render_asset::RenderAssets,
|
|
render_graph::{self, RenderGraph},
|
|
render_resource::*,
|
|
renderer::{RenderContext, RenderDevice},
|
|
RenderApp, RenderSet,
|
|
},
|
|
window::WindowPlugin,
|
|
};
|
|
use std::borrow::Cow;
|
|
|
|
const SIZE: (u32, u32) = (1280, 720);
|
|
const WORKGROUP_SIZE: u32 = 8;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.insert_resource(ClearColor(Color::BLACK))
|
|
.add_plugins(DefaultPlugins.set(WindowPlugin {
|
|
primary_window: Some(Window {
|
|
// uncomment for unthrottled FPS
|
|
// present_mode: bevy::window::PresentMode::AutoNoVsync,
|
|
..default()
|
|
}),
|
|
..default()
|
|
}))
|
|
.add_plugin(GameOfLifeComputePlugin)
|
|
.add_startup_system(setup)
|
|
.run();
|
|
}
|
|
|
|
fn setup(mut commands: Commands, mut images: ResMut<Assets<Image>>) {
|
|
let mut image = Image::new_fill(
|
|
Extent3d {
|
|
width: SIZE.0,
|
|
height: SIZE.1,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
&[0, 0, 0, 255],
|
|
TextureFormat::Rgba8Unorm,
|
|
);
|
|
image.texture_descriptor.usage =
|
|
TextureUsages::COPY_DST | TextureUsages::STORAGE_BINDING | TextureUsages::TEXTURE_BINDING;
|
|
let image = images.add(image);
|
|
|
|
commands.spawn(SpriteBundle {
|
|
sprite: Sprite {
|
|
custom_size: Some(Vec2::new(SIZE.0 as f32, SIZE.1 as f32)),
|
|
..default()
|
|
},
|
|
texture: image.clone(),
|
|
..default()
|
|
});
|
|
commands.spawn(Camera2dBundle::default());
|
|
|
|
commands.insert_resource(GameOfLifeImage(image));
|
|
}
|
|
|
|
pub struct GameOfLifeComputePlugin;
|
|
|
|
impl Plugin for GameOfLifeComputePlugin {
|
|
fn build(&self, app: &mut App) {
|
|
// Extract the game of life image resource from the main world into the render world
|
|
// for operation on by the compute shader and display on the sprite.
|
|
app.add_plugin(ExtractResourcePlugin::<GameOfLifeImage>::default());
|
|
let render_app = app.sub_app_mut(RenderApp);
|
|
render_app
|
|
.init_resource::<GameOfLifePipeline>()
|
|
.add_system(queue_bind_group.in_set(RenderSet::Queue));
|
|
|
|
let mut render_graph = render_app.world.resource_mut::<RenderGraph>();
|
|
render_graph.add_node("game_of_life", GameOfLifeNode::default());
|
|
render_graph.add_node_edge(
|
|
"game_of_life",
|
|
bevy::render::main_graph::node::CAMERA_DRIVER,
|
|
);
|
|
}
|
|
}
|
|
|
|
#[derive(Resource, Clone, Deref, ExtractResource)]
|
|
struct GameOfLifeImage(Handle<Image>);
|
|
|
|
#[derive(Resource)]
|
|
struct GameOfLifeImageBindGroup(BindGroup);
|
|
|
|
fn queue_bind_group(
|
|
mut commands: Commands,
|
|
pipeline: Res<GameOfLifePipeline>,
|
|
gpu_images: Res<RenderAssets<Image>>,
|
|
game_of_life_image: Res<GameOfLifeImage>,
|
|
render_device: Res<RenderDevice>,
|
|
) {
|
|
let view = &gpu_images[&game_of_life_image.0];
|
|
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
|
|
label: None,
|
|
layout: &pipeline.texture_bind_group_layout,
|
|
entries: &[BindGroupEntry {
|
|
binding: 0,
|
|
resource: BindingResource::TextureView(&view.texture_view),
|
|
}],
|
|
});
|
|
commands.insert_resource(GameOfLifeImageBindGroup(bind_group));
|
|
}
|
|
|
|
#[derive(Resource)]
|
|
pub struct GameOfLifePipeline {
|
|
texture_bind_group_layout: BindGroupLayout,
|
|
init_pipeline: CachedComputePipelineId,
|
|
update_pipeline: CachedComputePipelineId,
|
|
}
|
|
|
|
impl FromWorld for GameOfLifePipeline {
|
|
fn from_world(world: &mut World) -> Self {
|
|
let texture_bind_group_layout =
|
|
world
|
|
.resource::<RenderDevice>()
|
|
.create_bind_group_layout(&BindGroupLayoutDescriptor {
|
|
label: None,
|
|
entries: &[BindGroupLayoutEntry {
|
|
binding: 0,
|
|
visibility: ShaderStages::COMPUTE,
|
|
ty: BindingType::StorageTexture {
|
|
access: StorageTextureAccess::ReadWrite,
|
|
format: TextureFormat::Rgba8Unorm,
|
|
view_dimension: TextureViewDimension::D2,
|
|
},
|
|
count: None,
|
|
}],
|
|
});
|
|
let shader = world
|
|
.resource::<AssetServer>()
|
|
.load("shaders/game_of_life.wgsl");
|
|
let pipeline_cache = world.resource::<PipelineCache>();
|
|
let init_pipeline = pipeline_cache.queue_compute_pipeline(ComputePipelineDescriptor {
|
|
label: None,
|
|
layout: Some(vec![texture_bind_group_layout.clone()]),
|
|
shader: shader.clone(),
|
|
shader_defs: vec![],
|
|
entry_point: Cow::from("init"),
|
|
});
|
|
let update_pipeline = pipeline_cache.queue_compute_pipeline(ComputePipelineDescriptor {
|
|
label: None,
|
|
layout: Some(vec![texture_bind_group_layout.clone()]),
|
|
shader,
|
|
shader_defs: vec![],
|
|
entry_point: Cow::from("update"),
|
|
});
|
|
|
|
GameOfLifePipeline {
|
|
texture_bind_group_layout,
|
|
init_pipeline,
|
|
update_pipeline,
|
|
}
|
|
}
|
|
}
|
|
|
|
enum GameOfLifeState {
|
|
Loading,
|
|
Init,
|
|
Update,
|
|
}
|
|
|
|
struct GameOfLifeNode {
|
|
state: GameOfLifeState,
|
|
}
|
|
|
|
impl Default for GameOfLifeNode {
|
|
fn default() -> Self {
|
|
Self {
|
|
state: GameOfLifeState::Loading,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl render_graph::Node for GameOfLifeNode {
|
|
fn update(&mut self, world: &mut World) {
|
|
let pipeline = world.resource::<GameOfLifePipeline>();
|
|
let pipeline_cache = world.resource::<PipelineCache>();
|
|
|
|
// if the corresponding pipeline has loaded, transition to the next stage
|
|
match self.state {
|
|
GameOfLifeState::Loading => {
|
|
if let CachedPipelineState::Ok(_) =
|
|
pipeline_cache.get_compute_pipeline_state(pipeline.init_pipeline)
|
|
{
|
|
self.state = GameOfLifeState::Init;
|
|
}
|
|
}
|
|
GameOfLifeState::Init => {
|
|
if let CachedPipelineState::Ok(_) =
|
|
pipeline_cache.get_compute_pipeline_state(pipeline.update_pipeline)
|
|
{
|
|
self.state = GameOfLifeState::Update;
|
|
}
|
|
}
|
|
GameOfLifeState::Update => {}
|
|
}
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
_graph: &mut render_graph::RenderGraphContext,
|
|
render_context: &mut RenderContext,
|
|
world: &World,
|
|
) -> Result<(), render_graph::NodeRunError> {
|
|
let texture_bind_group = &world.resource::<GameOfLifeImageBindGroup>().0;
|
|
let pipeline_cache = world.resource::<PipelineCache>();
|
|
let pipeline = world.resource::<GameOfLifePipeline>();
|
|
|
|
let mut pass = render_context
|
|
.command_encoder()
|
|
.begin_compute_pass(&ComputePassDescriptor::default());
|
|
|
|
pass.set_bind_group(0, texture_bind_group, &[]);
|
|
|
|
// select the pipeline based on the current state
|
|
match self.state {
|
|
GameOfLifeState::Loading => {}
|
|
GameOfLifeState::Init => {
|
|
let init_pipeline = pipeline_cache
|
|
.get_compute_pipeline(pipeline.init_pipeline)
|
|
.unwrap();
|
|
pass.set_pipeline(init_pipeline);
|
|
pass.dispatch_workgroups(SIZE.0 / WORKGROUP_SIZE, SIZE.1 / WORKGROUP_SIZE, 1);
|
|
}
|
|
GameOfLifeState::Update => {
|
|
let update_pipeline = pipeline_cache
|
|
.get_compute_pipeline(pipeline.update_pipeline)
|
|
.unwrap();
|
|
pass.set_pipeline(update_pipeline);
|
|
pass.dispatch_workgroups(SIZE.0 / WORKGROUP_SIZE, SIZE.1 / WORKGROUP_SIZE, 1);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|