
# Objective Ultimately, I'd like to modify our font atlas creation systems so that they are able to resize the font atlases as more glyphs are added. At the moment, they create a new 512x512 atlas every time one fills up. With large font sizes and many glyphs, your glyphs may end up spread out across several atlases. The goal would be to render text more efficiently, because glyphs spread across fewer textures could benefit more from batching. `AtlasAllocator` already has support for growing atlases, but we don't currently have a way of growing a texture while keeping the pixel data intact. ## Solution Add a new method to `Image`: `resize_in_place` and a test for it. ## Testing Ran the new test, and also a little demo comparing this side-by-side with `resize`. <details> <summary>Expand Code</summary> ```rust //! Testing ground for #19410 use bevy::prelude::*; use bevy_render::render_resource::Extent3d; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, setup) .add_systems(Update, test) .init_resource::<Size>() .insert_resource(FillColor(Hsla::hsl(0.0, 1.0, 0.7))) .run(); } #[derive(Resource, Default)] struct Size(Option<UVec2>); #[derive(Resource)] struct FillColor(Hsla); #[derive(Component)] struct InPlace; fn setup(mut commands: Commands, asset_server: Res<AssetServer>) { commands.spawn(Camera2d); commands.spawn(( Transform::from_xyz(220.0, 0.0, 0.0), Sprite::from_image(asset_server.load("branding/bevy_bird_dark.png")), )); commands.spawn(( InPlace, Transform::from_xyz(-220.0, 0.0, 0.0), Sprite::from_image(asset_server.load("branding/icon.png")), )); } fn test( sprites: Query<(&Sprite, Has<InPlace>)>, mut images: ResMut<Assets<Image>>, mut new_size: ResMut<Size>, mut dir: Local<IVec2>, mut color: ResMut<FillColor>, ) -> Result { for (sprite, in_place) in &sprites { let image = images.get_mut(&sprite.image).ok_or("Image not found")?; let size = new_size.0.get_or_insert(image.size()); if *dir == IVec2::ZERO { *dir = IVec2::splat(1); } *size = size.saturating_add_signed(*dir); if size.x > 400 || size.x < 150 { *dir = *dir * -1; } color.0 = color.0.rotate_hue(1.0); if in_place { image.resize_in_place_2d( Extent3d { width: size.x, height: size.y, ..default() }, &Srgba::from(color.0).to_u8_array(), )?; } else { image.resize(Extent3d { width: size.x, height: size.y, ..default() }); } } Ok(()) } ``` </details> https://github.com/user-attachments/assets/6b2d0ec3-6a6e-4da1-98aa-29e7162f16fa ## Alternatives I think that this might be useful functionality outside of the font atlas scenario, but we *could* just increase the initial font atlas size, make it configurable, and/or size font atlases according to device limits. It's not totally clear to me how to accomplish that last idea.
1959 lines
75 KiB
Rust
1959 lines
75 KiB
Rust
#[cfg(feature = "basis-universal")]
|
|
use super::basis::*;
|
|
#[cfg(feature = "dds")]
|
|
use super::dds::*;
|
|
#[cfg(feature = "ktx2")]
|
|
use super::ktx2::*;
|
|
#[cfg(not(feature = "bevy_reflect"))]
|
|
use bevy_reflect::TypePath;
|
|
#[cfg(feature = "bevy_reflect")]
|
|
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
|
|
|
|
use bevy_asset::{Asset, RenderAssetUsages};
|
|
use bevy_color::{Color, ColorToComponents, Gray, LinearRgba, Srgba, Xyza};
|
|
use bevy_ecs::resource::Resource;
|
|
use bevy_math::{AspectRatio, UVec2, UVec3, Vec2};
|
|
use core::hash::Hash;
|
|
use serde::{Deserialize, Serialize};
|
|
use thiserror::Error;
|
|
use wgpu_types::{
|
|
AddressMode, CompareFunction, Extent3d, Features, FilterMode, SamplerBorderColor,
|
|
SamplerDescriptor, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
|
|
TextureViewDescriptor,
|
|
};
|
|
|
|
pub trait BevyDefault {
|
|
fn bevy_default() -> Self;
|
|
}
|
|
|
|
impl BevyDefault for TextureFormat {
|
|
fn bevy_default() -> Self {
|
|
TextureFormat::Rgba8UnormSrgb
|
|
}
|
|
}
|
|
|
|
pub const TEXTURE_ASSET_INDEX: u64 = 0;
|
|
pub const SAMPLER_ASSET_INDEX: u64 = 1;
|
|
|
|
#[derive(Debug, Serialize, Deserialize, Copy, Clone)]
|
|
pub enum ImageFormat {
|
|
#[cfg(feature = "basis-universal")]
|
|
Basis,
|
|
#[cfg(feature = "bmp")]
|
|
Bmp,
|
|
#[cfg(feature = "dds")]
|
|
Dds,
|
|
#[cfg(feature = "ff")]
|
|
Farbfeld,
|
|
#[cfg(feature = "gif")]
|
|
Gif,
|
|
#[cfg(feature = "exr")]
|
|
OpenExr,
|
|
#[cfg(feature = "hdr")]
|
|
Hdr,
|
|
#[cfg(feature = "ico")]
|
|
Ico,
|
|
#[cfg(feature = "jpeg")]
|
|
Jpeg,
|
|
#[cfg(feature = "ktx2")]
|
|
Ktx2,
|
|
#[cfg(feature = "png")]
|
|
Png,
|
|
#[cfg(feature = "pnm")]
|
|
Pnm,
|
|
#[cfg(feature = "qoi")]
|
|
Qoi,
|
|
#[cfg(feature = "tga")]
|
|
Tga,
|
|
#[cfg(feature = "tiff")]
|
|
Tiff,
|
|
#[cfg(feature = "webp")]
|
|
WebP,
|
|
}
|
|
|
|
macro_rules! feature_gate {
|
|
($feature: tt, $value: ident) => {{
|
|
#[cfg(not(feature = $feature))]
|
|
{
|
|
tracing::warn!("feature \"{}\" is not enabled", $feature);
|
|
return None;
|
|
}
|
|
#[cfg(feature = $feature)]
|
|
ImageFormat::$value
|
|
}};
|
|
}
|
|
|
|
impl ImageFormat {
|
|
/// Gets the file extensions for a given format.
|
|
pub const fn to_file_extensions(&self) -> &'static [&'static str] {
|
|
match self {
|
|
#[cfg(feature = "basis-universal")]
|
|
ImageFormat::Basis => &["basis"],
|
|
#[cfg(feature = "bmp")]
|
|
ImageFormat::Bmp => &["bmp"],
|
|
#[cfg(feature = "dds")]
|
|
ImageFormat::Dds => &["dds"],
|
|
#[cfg(feature = "ff")]
|
|
ImageFormat::Farbfeld => &["ff", "farbfeld"],
|
|
#[cfg(feature = "gif")]
|
|
ImageFormat::Gif => &["gif"],
|
|
#[cfg(feature = "exr")]
|
|
ImageFormat::OpenExr => &["exr"],
|
|
#[cfg(feature = "hdr")]
|
|
ImageFormat::Hdr => &["hdr"],
|
|
#[cfg(feature = "ico")]
|
|
ImageFormat::Ico => &["ico"],
|
|
#[cfg(feature = "jpeg")]
|
|
ImageFormat::Jpeg => &["jpg", "jpeg"],
|
|
#[cfg(feature = "ktx2")]
|
|
ImageFormat::Ktx2 => &["ktx2"],
|
|
#[cfg(feature = "pnm")]
|
|
ImageFormat::Pnm => &["pam", "pbm", "pgm", "ppm"],
|
|
#[cfg(feature = "png")]
|
|
ImageFormat::Png => &["png"],
|
|
#[cfg(feature = "qoi")]
|
|
ImageFormat::Qoi => &["qoi"],
|
|
#[cfg(feature = "tga")]
|
|
ImageFormat::Tga => &["tga"],
|
|
#[cfg(feature = "tiff")]
|
|
ImageFormat::Tiff => &["tif", "tiff"],
|
|
#[cfg(feature = "webp")]
|
|
ImageFormat::WebP => &["webp"],
|
|
// FIXME: https://github.com/rust-lang/rust/issues/129031
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_patterns` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_patterns,
|
|
reason = "The wildcard pattern will be unreachable if all formats are enabled; otherwise, it will be reachable"
|
|
)]
|
|
_ => &[],
|
|
}
|
|
}
|
|
|
|
/// Gets the MIME types for a given format.
|
|
///
|
|
/// If a format doesn't have any dedicated MIME types, this list will be empty.
|
|
pub const fn to_mime_types(&self) -> &'static [&'static str] {
|
|
match self {
|
|
#[cfg(feature = "basis-universal")]
|
|
ImageFormat::Basis => &["image/basis", "image/x-basis"],
|
|
#[cfg(feature = "bmp")]
|
|
ImageFormat::Bmp => &["image/bmp", "image/x-bmp"],
|
|
#[cfg(feature = "dds")]
|
|
ImageFormat::Dds => &["image/vnd-ms.dds"],
|
|
#[cfg(feature = "hdr")]
|
|
ImageFormat::Hdr => &["image/vnd.radiance"],
|
|
#[cfg(feature = "gif")]
|
|
ImageFormat::Gif => &["image/gif"],
|
|
#[cfg(feature = "ff")]
|
|
ImageFormat::Farbfeld => &[],
|
|
#[cfg(feature = "ico")]
|
|
ImageFormat::Ico => &["image/x-icon"],
|
|
#[cfg(feature = "jpeg")]
|
|
ImageFormat::Jpeg => &["image/jpeg"],
|
|
#[cfg(feature = "ktx2")]
|
|
ImageFormat::Ktx2 => &["image/ktx2"],
|
|
#[cfg(feature = "png")]
|
|
ImageFormat::Png => &["image/png"],
|
|
#[cfg(feature = "qoi")]
|
|
ImageFormat::Qoi => &["image/qoi", "image/x-qoi"],
|
|
#[cfg(feature = "exr")]
|
|
ImageFormat::OpenExr => &["image/x-exr"],
|
|
#[cfg(feature = "pnm")]
|
|
ImageFormat::Pnm => &[
|
|
"image/x-portable-bitmap",
|
|
"image/x-portable-graymap",
|
|
"image/x-portable-pixmap",
|
|
"image/x-portable-anymap",
|
|
],
|
|
#[cfg(feature = "tga")]
|
|
ImageFormat::Tga => &["image/x-targa", "image/x-tga"],
|
|
#[cfg(feature = "tiff")]
|
|
ImageFormat::Tiff => &["image/tiff"],
|
|
#[cfg(feature = "webp")]
|
|
ImageFormat::WebP => &["image/webp"],
|
|
// FIXME: https://github.com/rust-lang/rust/issues/129031
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_patterns` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_patterns,
|
|
reason = "The wildcard pattern will be unreachable if all formats are enabled; otherwise, it will be reachable"
|
|
)]
|
|
_ => &[],
|
|
}
|
|
}
|
|
|
|
pub fn from_mime_type(mime_type: &str) -> Option<Self> {
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_code` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_code,
|
|
reason = "If all features listed below are disabled, then all arms will have a `return None`, keeping the surrounding `Some()` from being constructed."
|
|
)]
|
|
Some(match mime_type.to_ascii_lowercase().as_str() {
|
|
// note: farbfeld does not have a MIME type
|
|
"image/basis" | "image/x-basis" => feature_gate!("basis-universal", Basis),
|
|
"image/bmp" | "image/x-bmp" => feature_gate!("bmp", Bmp),
|
|
"image/vnd-ms.dds" => feature_gate!("dds", Dds),
|
|
"image/vnd.radiance" => feature_gate!("hdr", Hdr),
|
|
"image/gif" => feature_gate!("gif", Gif),
|
|
"image/x-icon" => feature_gate!("ico", Ico),
|
|
"image/jpeg" => feature_gate!("jpeg", Jpeg),
|
|
"image/ktx2" => feature_gate!("ktx2", Ktx2),
|
|
"image/png" => feature_gate!("png", Png),
|
|
"image/qoi" | "image/x-qoi" => feature_gate!("qoi", Qoi),
|
|
"image/x-exr" => feature_gate!("exr", OpenExr),
|
|
"image/x-portable-bitmap"
|
|
| "image/x-portable-graymap"
|
|
| "image/x-portable-pixmap"
|
|
| "image/x-portable-anymap" => feature_gate!("pnm", Pnm),
|
|
"image/x-targa" | "image/x-tga" => feature_gate!("tga", Tga),
|
|
"image/tiff" => feature_gate!("tiff", Tiff),
|
|
"image/webp" => feature_gate!("webp", WebP),
|
|
_ => return None,
|
|
})
|
|
}
|
|
|
|
pub fn from_extension(extension: &str) -> Option<Self> {
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_code` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_code,
|
|
reason = "If all features listed below are disabled, then all arms will have a `return None`, keeping the surrounding `Some()` from being constructed."
|
|
)]
|
|
Some(match extension.to_ascii_lowercase().as_str() {
|
|
"basis" => feature_gate!("basis-universal", Basis),
|
|
"bmp" => feature_gate!("bmp", Bmp),
|
|
"dds" => feature_gate!("dds", Dds),
|
|
"ff" | "farbfeld" => feature_gate!("ff", Farbfeld),
|
|
"gif" => feature_gate!("gif", Gif),
|
|
"exr" => feature_gate!("exr", OpenExr),
|
|
"hdr" => feature_gate!("hdr", Hdr),
|
|
"ico" => feature_gate!("ico", Ico),
|
|
"jpg" | "jpeg" => feature_gate!("jpeg", Jpeg),
|
|
"ktx2" => feature_gate!("ktx2", Ktx2),
|
|
"pam" | "pbm" | "pgm" | "ppm" => feature_gate!("pnm", Pnm),
|
|
"png" => feature_gate!("png", Png),
|
|
"qoi" => feature_gate!("qoi", Qoi),
|
|
"tga" => feature_gate!("tga", Tga),
|
|
"tif" | "tiff" => feature_gate!("tiff", Tiff),
|
|
"webp" => feature_gate!("webp", WebP),
|
|
_ => return None,
|
|
})
|
|
}
|
|
|
|
pub fn as_image_crate_format(&self) -> Option<image::ImageFormat> {
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_code` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_code,
|
|
reason = "If all features listed below are disabled, then all arms will have a `return None`, keeping the surrounding `Some()` from being constructed."
|
|
)]
|
|
Some(match self {
|
|
#[cfg(feature = "bmp")]
|
|
ImageFormat::Bmp => image::ImageFormat::Bmp,
|
|
#[cfg(feature = "dds")]
|
|
ImageFormat::Dds => image::ImageFormat::Dds,
|
|
#[cfg(feature = "ff")]
|
|
ImageFormat::Farbfeld => image::ImageFormat::Farbfeld,
|
|
#[cfg(feature = "gif")]
|
|
ImageFormat::Gif => image::ImageFormat::Gif,
|
|
#[cfg(feature = "exr")]
|
|
ImageFormat::OpenExr => image::ImageFormat::OpenExr,
|
|
#[cfg(feature = "hdr")]
|
|
ImageFormat::Hdr => image::ImageFormat::Hdr,
|
|
#[cfg(feature = "ico")]
|
|
ImageFormat::Ico => image::ImageFormat::Ico,
|
|
#[cfg(feature = "jpeg")]
|
|
ImageFormat::Jpeg => image::ImageFormat::Jpeg,
|
|
#[cfg(feature = "png")]
|
|
ImageFormat::Png => image::ImageFormat::Png,
|
|
#[cfg(feature = "pnm")]
|
|
ImageFormat::Pnm => image::ImageFormat::Pnm,
|
|
#[cfg(feature = "qoi")]
|
|
ImageFormat::Qoi => image::ImageFormat::Qoi,
|
|
#[cfg(feature = "tga")]
|
|
ImageFormat::Tga => image::ImageFormat::Tga,
|
|
#[cfg(feature = "tiff")]
|
|
ImageFormat::Tiff => image::ImageFormat::Tiff,
|
|
#[cfg(feature = "webp")]
|
|
ImageFormat::WebP => image::ImageFormat::WebP,
|
|
#[cfg(feature = "basis-universal")]
|
|
ImageFormat::Basis => return None,
|
|
#[cfg(feature = "ktx2")]
|
|
ImageFormat::Ktx2 => return None,
|
|
// FIXME: https://github.com/rust-lang/rust/issues/129031
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_patterns` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_patterns,
|
|
reason = "The wildcard pattern will be unreachable if all formats are enabled; otherwise, it will be reachable"
|
|
)]
|
|
_ => return None,
|
|
})
|
|
}
|
|
|
|
pub fn from_image_crate_format(format: image::ImageFormat) -> Option<ImageFormat> {
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_code` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_code,
|
|
reason = "If all features listed below are disabled, then all arms will have a `return None`, keeping the surrounding `Some()` from being constructed."
|
|
)]
|
|
Some(match format {
|
|
image::ImageFormat::Bmp => feature_gate!("bmp", Bmp),
|
|
image::ImageFormat::Dds => feature_gate!("dds", Dds),
|
|
image::ImageFormat::Farbfeld => feature_gate!("ff", Farbfeld),
|
|
image::ImageFormat::Gif => feature_gate!("gif", Gif),
|
|
image::ImageFormat::OpenExr => feature_gate!("exr", OpenExr),
|
|
image::ImageFormat::Hdr => feature_gate!("hdr", Hdr),
|
|
image::ImageFormat::Ico => feature_gate!("ico", Ico),
|
|
image::ImageFormat::Jpeg => feature_gate!("jpeg", Jpeg),
|
|
image::ImageFormat::Png => feature_gate!("png", Png),
|
|
image::ImageFormat::Pnm => feature_gate!("pnm", Pnm),
|
|
image::ImageFormat::Qoi => feature_gate!("qoi", Qoi),
|
|
image::ImageFormat::Tga => feature_gate!("tga", Tga),
|
|
image::ImageFormat::Tiff => feature_gate!("tiff", Tiff),
|
|
image::ImageFormat::WebP => feature_gate!("webp", WebP),
|
|
_ => return None,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Asset, Debug, Clone)]
|
|
#[cfg_attr(
|
|
feature = "bevy_reflect",
|
|
derive(Reflect),
|
|
reflect(opaque, Default, Debug, Clone)
|
|
)]
|
|
#[cfg_attr(not(feature = "bevy_reflect"), derive(TypePath))]
|
|
pub struct Image {
|
|
/// Raw pixel data.
|
|
/// If the image is being used as a storage texture which doesn't need to be initialized by the
|
|
/// CPU, then this should be `None`.
|
|
/// Otherwise, it should always be `Some`.
|
|
pub data: Option<Vec<u8>>,
|
|
// TODO: this nesting makes accessing Image metadata verbose. Either flatten out descriptor or add accessors.
|
|
pub texture_descriptor: TextureDescriptor<Option<&'static str>, &'static [TextureFormat]>,
|
|
/// The [`ImageSampler`] to use during rendering.
|
|
pub sampler: ImageSampler,
|
|
pub texture_view_descriptor: Option<TextureViewDescriptor<Option<&'static str>>>,
|
|
pub asset_usage: RenderAssetUsages,
|
|
}
|
|
|
|
/// Used in [`Image`], this determines what image sampler to use when rendering. The default setting,
|
|
/// [`ImageSampler::Default`], will read the sampler from the `ImagePlugin` at setup.
|
|
/// Setting this to [`ImageSampler::Descriptor`] will override the global default descriptor for this [`Image`].
|
|
#[derive(Debug, Default, Clone, PartialEq, Serialize, Deserialize)]
|
|
pub enum ImageSampler {
|
|
/// Default image sampler, derived from the `ImagePlugin` setup.
|
|
#[default]
|
|
Default,
|
|
/// Custom sampler for this image which will override global default.
|
|
Descriptor(ImageSamplerDescriptor),
|
|
}
|
|
|
|
impl ImageSampler {
|
|
/// Returns an image sampler with [`ImageFilterMode::Linear`] min and mag filters
|
|
#[inline]
|
|
pub fn linear() -> ImageSampler {
|
|
ImageSampler::Descriptor(ImageSamplerDescriptor::linear())
|
|
}
|
|
|
|
/// Returns an image sampler with [`ImageFilterMode::Nearest`] min and mag filters
|
|
#[inline]
|
|
pub fn nearest() -> ImageSampler {
|
|
ImageSampler::Descriptor(ImageSamplerDescriptor::nearest())
|
|
}
|
|
|
|
/// Initialize the descriptor if it is not already initialized.
|
|
///
|
|
/// Descriptor is typically initialized by Bevy when the image is loaded,
|
|
/// so this is convenient shortcut for updating the descriptor.
|
|
pub fn get_or_init_descriptor(&mut self) -> &mut ImageSamplerDescriptor {
|
|
match self {
|
|
ImageSampler::Default => {
|
|
*self = ImageSampler::Descriptor(ImageSamplerDescriptor::default());
|
|
match self {
|
|
ImageSampler::Descriptor(descriptor) => descriptor,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
ImageSampler::Descriptor(descriptor) => descriptor,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// How edges should be handled in texture addressing.
|
|
///
|
|
/// See [`ImageSamplerDescriptor`] for information how to configure this.
|
|
///
|
|
/// This type mirrors [`AddressMode`].
|
|
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize)]
|
|
pub enum ImageAddressMode {
|
|
/// Clamp the value to the edge of the texture.
|
|
///
|
|
/// -0.25 -> 0.0
|
|
/// 1.25 -> 1.0
|
|
#[default]
|
|
ClampToEdge,
|
|
/// Repeat the texture in a tiling fashion.
|
|
///
|
|
/// -0.25 -> 0.75
|
|
/// 1.25 -> 0.25
|
|
Repeat,
|
|
/// Repeat the texture, mirroring it every repeat.
|
|
///
|
|
/// -0.25 -> 0.25
|
|
/// 1.25 -> 0.75
|
|
MirrorRepeat,
|
|
/// Clamp the value to the border of the texture
|
|
/// Requires the wgpu feature [`Features::ADDRESS_MODE_CLAMP_TO_BORDER`].
|
|
///
|
|
/// -0.25 -> border
|
|
/// 1.25 -> border
|
|
ClampToBorder,
|
|
}
|
|
|
|
/// Texel mixing mode when sampling between texels.
|
|
///
|
|
/// This type mirrors [`FilterMode`].
|
|
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize)]
|
|
pub enum ImageFilterMode {
|
|
/// Nearest neighbor sampling.
|
|
///
|
|
/// This creates a pixelated effect when used as a mag filter.
|
|
#[default]
|
|
Nearest,
|
|
/// Linear Interpolation.
|
|
///
|
|
/// This makes textures smooth but blurry when used as a mag filter.
|
|
Linear,
|
|
}
|
|
|
|
/// Comparison function used for depth and stencil operations.
|
|
///
|
|
/// This type mirrors [`CompareFunction`].
|
|
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
|
|
pub enum ImageCompareFunction {
|
|
/// Function never passes
|
|
Never,
|
|
/// Function passes if new value less than existing value
|
|
Less,
|
|
/// Function passes if new value is equal to existing value. When using
|
|
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
|
|
/// output as `@invariant` to prevent artifacting.
|
|
Equal,
|
|
/// Function passes if new value is less than or equal to existing value
|
|
LessEqual,
|
|
/// Function passes if new value is greater than existing value
|
|
Greater,
|
|
/// Function passes if new value is not equal to existing value. When using
|
|
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
|
|
/// output as `@invariant` to prevent artifacting.
|
|
NotEqual,
|
|
/// Function passes if new value is greater than or equal to existing value
|
|
GreaterEqual,
|
|
/// Function always passes
|
|
Always,
|
|
}
|
|
|
|
/// Color variation to use when the sampler addressing mode is [`ImageAddressMode::ClampToBorder`].
|
|
///
|
|
/// This type mirrors [`SamplerBorderColor`].
|
|
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
|
|
pub enum ImageSamplerBorderColor {
|
|
/// RGBA color `[0, 0, 0, 0]`.
|
|
TransparentBlack,
|
|
/// RGBA color `[0, 0, 0, 1]`.
|
|
OpaqueBlack,
|
|
/// RGBA color `[1, 1, 1, 1]`.
|
|
OpaqueWhite,
|
|
/// On the Metal wgpu backend, this is equivalent to [`Self::TransparentBlack`] for
|
|
/// textures that have an alpha component, and equivalent to [`Self::OpaqueBlack`]
|
|
/// for textures that do not have an alpha component. On other backends,
|
|
/// this is equivalent to [`Self::TransparentBlack`]. Requires
|
|
/// [`Features::ADDRESS_MODE_CLAMP_TO_ZERO`]. Not supported on the web.
|
|
Zero,
|
|
}
|
|
|
|
/// Indicates to an `ImageLoader` how an [`Image`] should be sampled.
|
|
///
|
|
/// As this type is part of the `ImageLoaderSettings`,
|
|
/// it will be serialized to an image asset `.meta` file which might require a migration in case of
|
|
/// a breaking change.
|
|
///
|
|
/// This types mirrors [`SamplerDescriptor`], but that might change in future versions.
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
|
pub struct ImageSamplerDescriptor {
|
|
pub label: Option<String>,
|
|
/// How to deal with out of bounds accesses in the u (i.e. x) direction.
|
|
pub address_mode_u: ImageAddressMode,
|
|
/// How to deal with out of bounds accesses in the v (i.e. y) direction.
|
|
pub address_mode_v: ImageAddressMode,
|
|
/// How to deal with out of bounds accesses in the w (i.e. z) direction.
|
|
pub address_mode_w: ImageAddressMode,
|
|
/// How to filter the texture when it needs to be magnified (made larger).
|
|
pub mag_filter: ImageFilterMode,
|
|
/// How to filter the texture when it needs to be minified (made smaller).
|
|
pub min_filter: ImageFilterMode,
|
|
/// How to filter between mip map levels
|
|
pub mipmap_filter: ImageFilterMode,
|
|
/// Minimum level of detail (i.e. mip level) to use.
|
|
pub lod_min_clamp: f32,
|
|
/// Maximum level of detail (i.e. mip level) to use.
|
|
pub lod_max_clamp: f32,
|
|
/// If this is enabled, this is a comparison sampler using the given comparison function.
|
|
pub compare: Option<ImageCompareFunction>,
|
|
/// Must be at least 1. If this is not 1, all filter modes must be linear.
|
|
pub anisotropy_clamp: u16,
|
|
/// Border color to use when `address_mode` is [`ImageAddressMode::ClampToBorder`].
|
|
pub border_color: Option<ImageSamplerBorderColor>,
|
|
}
|
|
|
|
impl Default for ImageSamplerDescriptor {
|
|
fn default() -> Self {
|
|
Self {
|
|
address_mode_u: Default::default(),
|
|
address_mode_v: Default::default(),
|
|
address_mode_w: Default::default(),
|
|
mag_filter: Default::default(),
|
|
min_filter: Default::default(),
|
|
mipmap_filter: Default::default(),
|
|
lod_min_clamp: 0.0,
|
|
lod_max_clamp: 32.0,
|
|
compare: None,
|
|
anisotropy_clamp: 1,
|
|
border_color: None,
|
|
label: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ImageSamplerDescriptor {
|
|
/// Returns a sampler descriptor with [`Linear`](ImageFilterMode::Linear) min and mag filters
|
|
#[inline]
|
|
pub fn linear() -> ImageSamplerDescriptor {
|
|
ImageSamplerDescriptor {
|
|
mag_filter: ImageFilterMode::Linear,
|
|
min_filter: ImageFilterMode::Linear,
|
|
mipmap_filter: ImageFilterMode::Linear,
|
|
..Default::default()
|
|
}
|
|
}
|
|
|
|
/// Returns a sampler descriptor with [`Nearest`](ImageFilterMode::Nearest) min and mag filters
|
|
#[inline]
|
|
pub fn nearest() -> ImageSamplerDescriptor {
|
|
ImageSamplerDescriptor {
|
|
mag_filter: ImageFilterMode::Nearest,
|
|
min_filter: ImageFilterMode::Nearest,
|
|
mipmap_filter: ImageFilterMode::Nearest,
|
|
..Default::default()
|
|
}
|
|
}
|
|
|
|
pub fn as_wgpu(&self) -> SamplerDescriptor<Option<&str>> {
|
|
SamplerDescriptor {
|
|
label: self.label.as_deref(),
|
|
address_mode_u: self.address_mode_u.into(),
|
|
address_mode_v: self.address_mode_v.into(),
|
|
address_mode_w: self.address_mode_w.into(),
|
|
mag_filter: self.mag_filter.into(),
|
|
min_filter: self.min_filter.into(),
|
|
mipmap_filter: self.mipmap_filter.into(),
|
|
lod_min_clamp: self.lod_min_clamp,
|
|
lod_max_clamp: self.lod_max_clamp,
|
|
compare: self.compare.map(Into::into),
|
|
anisotropy_clamp: self.anisotropy_clamp,
|
|
border_color: self.border_color.map(Into::into),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<ImageAddressMode> for AddressMode {
|
|
fn from(value: ImageAddressMode) -> Self {
|
|
match value {
|
|
ImageAddressMode::ClampToEdge => AddressMode::ClampToEdge,
|
|
ImageAddressMode::Repeat => AddressMode::Repeat,
|
|
ImageAddressMode::MirrorRepeat => AddressMode::MirrorRepeat,
|
|
ImageAddressMode::ClampToBorder => AddressMode::ClampToBorder,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<ImageFilterMode> for FilterMode {
|
|
fn from(value: ImageFilterMode) -> Self {
|
|
match value {
|
|
ImageFilterMode::Nearest => FilterMode::Nearest,
|
|
ImageFilterMode::Linear => FilterMode::Linear,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<ImageCompareFunction> for CompareFunction {
|
|
fn from(value: ImageCompareFunction) -> Self {
|
|
match value {
|
|
ImageCompareFunction::Never => CompareFunction::Never,
|
|
ImageCompareFunction::Less => CompareFunction::Less,
|
|
ImageCompareFunction::Equal => CompareFunction::Equal,
|
|
ImageCompareFunction::LessEqual => CompareFunction::LessEqual,
|
|
ImageCompareFunction::Greater => CompareFunction::Greater,
|
|
ImageCompareFunction::NotEqual => CompareFunction::NotEqual,
|
|
ImageCompareFunction::GreaterEqual => CompareFunction::GreaterEqual,
|
|
ImageCompareFunction::Always => CompareFunction::Always,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<ImageSamplerBorderColor> for SamplerBorderColor {
|
|
fn from(value: ImageSamplerBorderColor) -> Self {
|
|
match value {
|
|
ImageSamplerBorderColor::TransparentBlack => SamplerBorderColor::TransparentBlack,
|
|
ImageSamplerBorderColor::OpaqueBlack => SamplerBorderColor::OpaqueBlack,
|
|
ImageSamplerBorderColor::OpaqueWhite => SamplerBorderColor::OpaqueWhite,
|
|
ImageSamplerBorderColor::Zero => SamplerBorderColor::Zero,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<AddressMode> for ImageAddressMode {
|
|
fn from(value: AddressMode) -> Self {
|
|
match value {
|
|
AddressMode::ClampToEdge => ImageAddressMode::ClampToEdge,
|
|
AddressMode::Repeat => ImageAddressMode::Repeat,
|
|
AddressMode::MirrorRepeat => ImageAddressMode::MirrorRepeat,
|
|
AddressMode::ClampToBorder => ImageAddressMode::ClampToBorder,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<FilterMode> for ImageFilterMode {
|
|
fn from(value: FilterMode) -> Self {
|
|
match value {
|
|
FilterMode::Nearest => ImageFilterMode::Nearest,
|
|
FilterMode::Linear => ImageFilterMode::Linear,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<CompareFunction> for ImageCompareFunction {
|
|
fn from(value: CompareFunction) -> Self {
|
|
match value {
|
|
CompareFunction::Never => ImageCompareFunction::Never,
|
|
CompareFunction::Less => ImageCompareFunction::Less,
|
|
CompareFunction::Equal => ImageCompareFunction::Equal,
|
|
CompareFunction::LessEqual => ImageCompareFunction::LessEqual,
|
|
CompareFunction::Greater => ImageCompareFunction::Greater,
|
|
CompareFunction::NotEqual => ImageCompareFunction::NotEqual,
|
|
CompareFunction::GreaterEqual => ImageCompareFunction::GreaterEqual,
|
|
CompareFunction::Always => ImageCompareFunction::Always,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<SamplerBorderColor> for ImageSamplerBorderColor {
|
|
fn from(value: SamplerBorderColor) -> Self {
|
|
match value {
|
|
SamplerBorderColor::TransparentBlack => ImageSamplerBorderColor::TransparentBlack,
|
|
SamplerBorderColor::OpaqueBlack => ImageSamplerBorderColor::OpaqueBlack,
|
|
SamplerBorderColor::OpaqueWhite => ImageSamplerBorderColor::OpaqueWhite,
|
|
SamplerBorderColor::Zero => ImageSamplerBorderColor::Zero,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<SamplerDescriptor<Option<&str>>> for ImageSamplerDescriptor {
|
|
fn from(value: SamplerDescriptor<Option<&str>>) -> Self {
|
|
ImageSamplerDescriptor {
|
|
label: value.label.map(ToString::to_string),
|
|
address_mode_u: value.address_mode_u.into(),
|
|
address_mode_v: value.address_mode_v.into(),
|
|
address_mode_w: value.address_mode_w.into(),
|
|
mag_filter: value.mag_filter.into(),
|
|
min_filter: value.min_filter.into(),
|
|
mipmap_filter: value.mipmap_filter.into(),
|
|
lod_min_clamp: value.lod_min_clamp,
|
|
lod_max_clamp: value.lod_max_clamp,
|
|
compare: value.compare.map(Into::into),
|
|
anisotropy_clamp: value.anisotropy_clamp,
|
|
border_color: value.border_color.map(Into::into),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for Image {
|
|
/// default is a 1x1x1 all '1.0' texture
|
|
fn default() -> Self {
|
|
let mut image = Image::default_uninit();
|
|
image.data = Some(vec![255; image.texture_descriptor.format.pixel_size()]);
|
|
image
|
|
}
|
|
}
|
|
|
|
impl Image {
|
|
/// Creates a new image from raw binary data and the corresponding metadata.
|
|
///
|
|
/// # Panics
|
|
/// Panics if the length of the `data`, volume of the `size` and the size of the `format`
|
|
/// do not match.
|
|
pub fn new(
|
|
size: Extent3d,
|
|
dimension: TextureDimension,
|
|
data: Vec<u8>,
|
|
format: TextureFormat,
|
|
asset_usage: RenderAssetUsages,
|
|
) -> Self {
|
|
debug_assert_eq!(
|
|
size.volume() * format.pixel_size(),
|
|
data.len(),
|
|
"Pixel data, size and format have to match",
|
|
);
|
|
let mut image = Image::new_uninit(size, dimension, format, asset_usage);
|
|
image.data = Some(data);
|
|
image
|
|
}
|
|
|
|
/// Exactly the same as [`Image::new`], but doesn't initialize the image
|
|
pub fn new_uninit(
|
|
size: Extent3d,
|
|
dimension: TextureDimension,
|
|
format: TextureFormat,
|
|
asset_usage: RenderAssetUsages,
|
|
) -> Self {
|
|
Image {
|
|
data: None,
|
|
texture_descriptor: TextureDescriptor {
|
|
size,
|
|
format,
|
|
dimension,
|
|
label: None,
|
|
mip_level_count: 1,
|
|
sample_count: 1,
|
|
usage: TextureUsages::TEXTURE_BINDING | TextureUsages::COPY_DST,
|
|
view_formats: &[],
|
|
},
|
|
sampler: ImageSampler::Default,
|
|
texture_view_descriptor: None,
|
|
asset_usage,
|
|
}
|
|
}
|
|
|
|
/// A transparent white 1x1x1 image.
|
|
///
|
|
/// Contrast to [`Image::default`], which is opaque.
|
|
pub fn transparent() -> Image {
|
|
// We rely on the default texture format being RGBA8UnormSrgb
|
|
// when constructing a transparent color from bytes.
|
|
// If this changes, this function will need to be updated.
|
|
let format = TextureFormat::bevy_default();
|
|
debug_assert!(format.pixel_size() == 4);
|
|
let data = vec![255, 255, 255, 0];
|
|
Image::new(
|
|
Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
data,
|
|
format,
|
|
RenderAssetUsages::default(),
|
|
)
|
|
}
|
|
/// Creates a new uninitialized 1x1x1 image
|
|
pub fn default_uninit() -> Image {
|
|
Image::new_uninit(
|
|
Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
TextureFormat::bevy_default(),
|
|
RenderAssetUsages::default(),
|
|
)
|
|
}
|
|
|
|
/// Creates a new image from raw binary data and the corresponding metadata, by filling
|
|
/// the image data with the `pixel` data repeated multiple times.
|
|
///
|
|
/// # Panics
|
|
/// Panics if the size of the `format` is not a multiple of the length of the `pixel` data.
|
|
pub fn new_fill(
|
|
size: Extent3d,
|
|
dimension: TextureDimension,
|
|
pixel: &[u8],
|
|
format: TextureFormat,
|
|
asset_usage: RenderAssetUsages,
|
|
) -> Self {
|
|
let byte_len = format.pixel_size() * size.volume();
|
|
debug_assert_eq!(
|
|
pixel.len() % format.pixel_size(),
|
|
0,
|
|
"Must not have incomplete pixel data (pixel size is {}B).",
|
|
format.pixel_size(),
|
|
);
|
|
debug_assert!(
|
|
pixel.len() <= byte_len,
|
|
"Fill data must fit within pixel buffer (expected {}B).",
|
|
byte_len,
|
|
);
|
|
let data = pixel.iter().copied().cycle().take(byte_len).collect();
|
|
Image::new(size, dimension, data, format, asset_usage)
|
|
}
|
|
|
|
/// Returns the width of a 2D image.
|
|
#[inline]
|
|
pub fn width(&self) -> u32 {
|
|
self.texture_descriptor.size.width
|
|
}
|
|
|
|
/// Returns the height of a 2D image.
|
|
#[inline]
|
|
pub fn height(&self) -> u32 {
|
|
self.texture_descriptor.size.height
|
|
}
|
|
|
|
/// Returns the aspect ratio (width / height) of a 2D image.
|
|
#[inline]
|
|
pub fn aspect_ratio(&self) -> AspectRatio {
|
|
AspectRatio::try_from_pixels(self.width(), self.height()).expect(
|
|
"Failed to calculate aspect ratio: Image dimensions must be positive, non-zero values",
|
|
)
|
|
}
|
|
|
|
/// Returns the size of a 2D image as f32.
|
|
#[inline]
|
|
pub fn size_f32(&self) -> Vec2 {
|
|
Vec2::new(self.width() as f32, self.height() as f32)
|
|
}
|
|
|
|
/// Returns the size of a 2D image.
|
|
#[inline]
|
|
pub fn size(&self) -> UVec2 {
|
|
UVec2::new(self.width(), self.height())
|
|
}
|
|
|
|
/// Resizes the image to the new size, by removing information or appending 0 to the `data`.
|
|
/// Does not properly scale the contents of the image.
|
|
///
|
|
/// If you need to keep pixel data intact, use [`Image::resize_in_place`].
|
|
pub fn resize(&mut self, size: Extent3d) {
|
|
self.texture_descriptor.size = size;
|
|
if let Some(ref mut data) = self.data {
|
|
data.resize(
|
|
size.volume() * self.texture_descriptor.format.pixel_size(),
|
|
0,
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Changes the `size`, asserting that the total number of data elements (pixels) remains the
|
|
/// same.
|
|
///
|
|
/// # Panics
|
|
/// Panics if the `new_size` does not have the same volume as to old one.
|
|
pub fn reinterpret_size(&mut self, new_size: Extent3d) {
|
|
assert_eq!(
|
|
new_size.volume(),
|
|
self.texture_descriptor.size.volume(),
|
|
"Incompatible sizes: old = {:?} new = {:?}",
|
|
self.texture_descriptor.size,
|
|
new_size
|
|
);
|
|
|
|
self.texture_descriptor.size = new_size;
|
|
}
|
|
|
|
/// Resizes the image to the new size, keeping the pixel data intact, anchored at the top-left.
|
|
/// When growing, the new space is filled with 0. When shrinking, the image is clipped.
|
|
///
|
|
/// For faster resizing when keeping pixel data intact is not important, use [`Image::resize`].
|
|
pub fn resize_in_place(&mut self, new_size: Extent3d) -> Result<(), ResizeError> {
|
|
let old_size = self.texture_descriptor.size;
|
|
let pixel_size = self.texture_descriptor.format.pixel_size();
|
|
let byte_len = self.texture_descriptor.format.pixel_size() * new_size.volume();
|
|
|
|
let Some(ref mut data) = self.data else {
|
|
return Err(ResizeError::ImageWithoutData);
|
|
};
|
|
|
|
let mut new: Vec<u8> = vec![0; byte_len];
|
|
|
|
let copy_width = old_size.width.min(new_size.width) as usize;
|
|
let copy_height = old_size.height.min(new_size.height) as usize;
|
|
let copy_depth = old_size
|
|
.depth_or_array_layers
|
|
.min(new_size.depth_or_array_layers) as usize;
|
|
|
|
let old_row_stride = old_size.width as usize * pixel_size;
|
|
let old_layer_stride = old_size.height as usize * old_row_stride;
|
|
|
|
let new_row_stride = new_size.width as usize * pixel_size;
|
|
let new_layer_stride = new_size.height as usize * new_row_stride;
|
|
|
|
for z in 0..copy_depth {
|
|
for y in 0..copy_height {
|
|
let old_offset = z * old_layer_stride + y * old_row_stride;
|
|
let new_offset = z * new_layer_stride + y * new_row_stride;
|
|
|
|
let old_range = (old_offset)..(old_offset + copy_width * pixel_size);
|
|
let new_range = (new_offset)..(new_offset + copy_width * pixel_size);
|
|
|
|
new[new_range].copy_from_slice(&data[old_range]);
|
|
}
|
|
}
|
|
|
|
self.data = Some(new);
|
|
|
|
self.texture_descriptor.size = new_size;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Takes a 2D image containing vertically stacked images of the same size, and reinterprets
|
|
/// it as a 2D array texture, where each of the stacked images becomes one layer of the
|
|
/// array. This is primarily for use with the `texture2DArray` shader uniform type.
|
|
///
|
|
/// # Panics
|
|
/// Panics if the texture is not 2D, has more than one layers or is not evenly dividable into
|
|
/// the `layers`.
|
|
pub fn reinterpret_stacked_2d_as_array(&mut self, layers: u32) {
|
|
// Must be a stacked image, and the height must be divisible by layers.
|
|
assert_eq!(self.texture_descriptor.dimension, TextureDimension::D2);
|
|
assert_eq!(self.texture_descriptor.size.depth_or_array_layers, 1);
|
|
assert_eq!(self.height() % layers, 0);
|
|
|
|
self.reinterpret_size(Extent3d {
|
|
width: self.width(),
|
|
height: self.height() / layers,
|
|
depth_or_array_layers: layers,
|
|
});
|
|
}
|
|
|
|
/// Convert a texture from a format to another. Only a few formats are
|
|
/// supported as input and output:
|
|
/// - `TextureFormat::R8Unorm`
|
|
/// - `TextureFormat::Rg8Unorm`
|
|
/// - `TextureFormat::Rgba8UnormSrgb`
|
|
///
|
|
/// To get [`Image`] as a [`image::DynamicImage`] see:
|
|
/// [`Image::try_into_dynamic`].
|
|
pub fn convert(&self, new_format: TextureFormat) -> Option<Self> {
|
|
self.clone()
|
|
.try_into_dynamic()
|
|
.ok()
|
|
.and_then(|img| match new_format {
|
|
TextureFormat::R8Unorm => {
|
|
Some((image::DynamicImage::ImageLuma8(img.into_luma8()), false))
|
|
}
|
|
TextureFormat::Rg8Unorm => Some((
|
|
image::DynamicImage::ImageLumaA8(img.into_luma_alpha8()),
|
|
false,
|
|
)),
|
|
TextureFormat::Rgba8UnormSrgb => {
|
|
Some((image::DynamicImage::ImageRgba8(img.into_rgba8()), true))
|
|
}
|
|
_ => None,
|
|
})
|
|
.map(|(dyn_img, is_srgb)| Self::from_dynamic(dyn_img, is_srgb, self.asset_usage))
|
|
}
|
|
|
|
/// Load a bytes buffer in a [`Image`], according to type `image_type`, using the `image`
|
|
/// crate
|
|
pub fn from_buffer(
|
|
buffer: &[u8],
|
|
image_type: ImageType,
|
|
#[cfg_attr(
|
|
not(any(feature = "basis-universal", feature = "dds", feature = "ktx2")),
|
|
expect(unused_variables, reason = "only used with certain features")
|
|
)]
|
|
supported_compressed_formats: CompressedImageFormats,
|
|
is_srgb: bool,
|
|
image_sampler: ImageSampler,
|
|
asset_usage: RenderAssetUsages,
|
|
) -> Result<Image, TextureError> {
|
|
let format = image_type.to_image_format()?;
|
|
|
|
// Load the image in the expected format.
|
|
// Some formats like PNG allow for R or RG textures too, so the texture
|
|
// format needs to be determined. For RGB textures an alpha channel
|
|
// needs to be added, so the image data needs to be converted in those
|
|
// cases.
|
|
|
|
let mut image = match format {
|
|
#[cfg(feature = "basis-universal")]
|
|
ImageFormat::Basis => {
|
|
basis_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
|
|
}
|
|
#[cfg(feature = "dds")]
|
|
ImageFormat::Dds => dds_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?,
|
|
#[cfg(feature = "ktx2")]
|
|
ImageFormat::Ktx2 => {
|
|
ktx2_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
|
|
}
|
|
#[expect(
|
|
clippy::allow_attributes,
|
|
reason = "`unreachable_patterns` may not always lint"
|
|
)]
|
|
#[allow(
|
|
unreachable_patterns,
|
|
reason = "The wildcard pattern may be unreachable if only the specially-handled formats are enabled; however, the wildcard pattern is needed for any formats not specially handled"
|
|
)]
|
|
_ => {
|
|
let image_crate_format = format
|
|
.as_image_crate_format()
|
|
.ok_or_else(|| TextureError::UnsupportedTextureFormat(format!("{format:?}")))?;
|
|
let mut reader = image::ImageReader::new(std::io::Cursor::new(buffer));
|
|
reader.set_format(image_crate_format);
|
|
reader.no_limits();
|
|
let dyn_img = reader.decode()?;
|
|
Self::from_dynamic(dyn_img, is_srgb, asset_usage)
|
|
}
|
|
};
|
|
image.sampler = image_sampler;
|
|
Ok(image)
|
|
}
|
|
|
|
/// Whether the texture format is compressed or uncompressed
|
|
pub fn is_compressed(&self) -> bool {
|
|
let format_description = self.texture_descriptor.format;
|
|
format_description
|
|
.required_features()
|
|
.contains(Features::TEXTURE_COMPRESSION_ASTC)
|
|
|| format_description
|
|
.required_features()
|
|
.contains(Features::TEXTURE_COMPRESSION_BC)
|
|
|| format_description
|
|
.required_features()
|
|
.contains(Features::TEXTURE_COMPRESSION_ETC2)
|
|
}
|
|
|
|
/// Compute the byte offset where the data of a specific pixel is stored
|
|
///
|
|
/// Returns None if the provided coordinates are out of bounds.
|
|
///
|
|
/// For 2D textures, Z is the layer number. For 1D textures, Y and Z are ignored.
|
|
#[inline(always)]
|
|
pub fn pixel_data_offset(&self, coords: UVec3) -> Option<usize> {
|
|
let width = self.texture_descriptor.size.width;
|
|
let height = self.texture_descriptor.size.height;
|
|
let depth = self.texture_descriptor.size.depth_or_array_layers;
|
|
|
|
let pixel_size = self.texture_descriptor.format.pixel_size();
|
|
let pixel_offset = match self.texture_descriptor.dimension {
|
|
TextureDimension::D3 | TextureDimension::D2 => {
|
|
if coords.x >= width || coords.y >= height || coords.z >= depth {
|
|
return None;
|
|
}
|
|
coords.z * height * width + coords.y * width + coords.x
|
|
}
|
|
TextureDimension::D1 => {
|
|
if coords.x >= width {
|
|
return None;
|
|
}
|
|
coords.x
|
|
}
|
|
};
|
|
|
|
Some(pixel_offset as usize * pixel_size)
|
|
}
|
|
|
|
/// Get a reference to the data bytes where a specific pixel's value is stored
|
|
#[inline(always)]
|
|
pub fn pixel_bytes(&self, coords: UVec3) -> Option<&[u8]> {
|
|
let len = self.texture_descriptor.format.pixel_size();
|
|
let data = self.data.as_ref()?;
|
|
self.pixel_data_offset(coords)
|
|
.map(|start| &data[start..(start + len)])
|
|
}
|
|
|
|
/// Get a mutable reference to the data bytes where a specific pixel's value is stored
|
|
#[inline(always)]
|
|
pub fn pixel_bytes_mut(&mut self, coords: UVec3) -> Option<&mut [u8]> {
|
|
let len = self.texture_descriptor.format.pixel_size();
|
|
let offset = self.pixel_data_offset(coords);
|
|
let data = self.data.as_mut()?;
|
|
offset.map(|start| &mut data[start..(start + len)])
|
|
}
|
|
|
|
/// Read the color of a specific pixel (1D texture).
|
|
///
|
|
/// See [`get_color_at`](Self::get_color_at) for more details.
|
|
#[inline(always)]
|
|
pub fn get_color_at_1d(&self, x: u32) -> Result<Color, TextureAccessError> {
|
|
if self.texture_descriptor.dimension != TextureDimension::D1 {
|
|
return Err(TextureAccessError::WrongDimension);
|
|
}
|
|
self.get_color_at_internal(UVec3::new(x, 0, 0))
|
|
}
|
|
|
|
/// Read the color of a specific pixel (2D texture).
|
|
///
|
|
/// This function will find the raw byte data of a specific pixel and
|
|
/// decode it into a user-friendly [`Color`] struct for you.
|
|
///
|
|
/// Supports many of the common [`TextureFormat`]s:
|
|
/// - RGBA/BGRA 8-bit unsigned integer, both sRGB and Linear
|
|
/// - 16-bit and 32-bit unsigned integer
|
|
/// - 16-bit and 32-bit float
|
|
///
|
|
/// Be careful: as the data is converted to [`Color`] (which uses `f32` internally),
|
|
/// there may be issues with precision when using non-f32 [`TextureFormat`]s.
|
|
/// If you read a value you previously wrote using `set_color_at`, it will not match.
|
|
/// If you are working with a 32-bit integer [`TextureFormat`], the value will be
|
|
/// inaccurate (as `f32` does not have enough bits to represent it exactly).
|
|
///
|
|
/// Single channel (R) formats are assumed to represent grayscale, so the value
|
|
/// will be copied to all three RGB channels in the resulting [`Color`].
|
|
///
|
|
/// Other [`TextureFormat`]s are unsupported, such as:
|
|
/// - block-compressed formats
|
|
/// - non-byte-aligned formats like 10-bit
|
|
/// - signed integer formats
|
|
#[inline(always)]
|
|
pub fn get_color_at(&self, x: u32, y: u32) -> Result<Color, TextureAccessError> {
|
|
if self.texture_descriptor.dimension != TextureDimension::D2 {
|
|
return Err(TextureAccessError::WrongDimension);
|
|
}
|
|
self.get_color_at_internal(UVec3::new(x, y, 0))
|
|
}
|
|
|
|
/// Read the color of a specific pixel (2D texture with layers or 3D texture).
|
|
///
|
|
/// See [`get_color_at`](Self::get_color_at) for more details.
|
|
#[inline(always)]
|
|
pub fn get_color_at_3d(&self, x: u32, y: u32, z: u32) -> Result<Color, TextureAccessError> {
|
|
match (
|
|
self.texture_descriptor.dimension,
|
|
self.texture_descriptor.size.depth_or_array_layers,
|
|
) {
|
|
(TextureDimension::D3, _) | (TextureDimension::D2, 2..) => {
|
|
self.get_color_at_internal(UVec3::new(x, y, z))
|
|
}
|
|
_ => Err(TextureAccessError::WrongDimension),
|
|
}
|
|
}
|
|
|
|
/// Change the color of a specific pixel (1D texture).
|
|
///
|
|
/// See [`set_color_at`](Self::set_color_at) for more details.
|
|
#[inline(always)]
|
|
pub fn set_color_at_1d(&mut self, x: u32, color: Color) -> Result<(), TextureAccessError> {
|
|
if self.texture_descriptor.dimension != TextureDimension::D1 {
|
|
return Err(TextureAccessError::WrongDimension);
|
|
}
|
|
self.set_color_at_internal(UVec3::new(x, 0, 0), color)
|
|
}
|
|
|
|
/// Change the color of a specific pixel (2D texture).
|
|
///
|
|
/// This function will find the raw byte data of a specific pixel and
|
|
/// change it according to a [`Color`] you provide. The [`Color`] struct
|
|
/// will be encoded into the [`Image`]'s [`TextureFormat`].
|
|
///
|
|
/// Supports many of the common [`TextureFormat`]s:
|
|
/// - RGBA/BGRA 8-bit unsigned integer, both sRGB and Linear
|
|
/// - 16-bit and 32-bit unsigned integer (with possibly-limited precision, as [`Color`] uses `f32`)
|
|
/// - 16-bit and 32-bit float
|
|
///
|
|
/// Be careful: writing to non-f32 [`TextureFormat`]s is lossy! The data has to be converted,
|
|
/// so if you read it back using `get_color_at`, the `Color` you get will not equal the value
|
|
/// you used when writing it using this function.
|
|
///
|
|
/// For R and RG formats, only the respective values from the linear RGB [`Color`] will be used.
|
|
///
|
|
/// Other [`TextureFormat`]s are unsupported, such as:
|
|
/// - block-compressed formats
|
|
/// - non-byte-aligned formats like 10-bit
|
|
/// - signed integer formats
|
|
#[inline(always)]
|
|
pub fn set_color_at(&mut self, x: u32, y: u32, color: Color) -> Result<(), TextureAccessError> {
|
|
if self.texture_descriptor.dimension != TextureDimension::D2 {
|
|
return Err(TextureAccessError::WrongDimension);
|
|
}
|
|
self.set_color_at_internal(UVec3::new(x, y, 0), color)
|
|
}
|
|
|
|
/// Change the color of a specific pixel (2D texture with layers or 3D texture).
|
|
///
|
|
/// See [`set_color_at`](Self::set_color_at) for more details.
|
|
#[inline(always)]
|
|
pub fn set_color_at_3d(
|
|
&mut self,
|
|
x: u32,
|
|
y: u32,
|
|
z: u32,
|
|
color: Color,
|
|
) -> Result<(), TextureAccessError> {
|
|
match (
|
|
self.texture_descriptor.dimension,
|
|
self.texture_descriptor.size.depth_or_array_layers,
|
|
) {
|
|
(TextureDimension::D3, _) | (TextureDimension::D2, 2..) => {
|
|
self.set_color_at_internal(UVec3::new(x, y, z), color)
|
|
}
|
|
_ => Err(TextureAccessError::WrongDimension),
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_color_at_internal(&self, coords: UVec3) -> Result<Color, TextureAccessError> {
|
|
let Some(bytes) = self.pixel_bytes(coords) else {
|
|
return Err(TextureAccessError::OutOfBounds {
|
|
x: coords.x,
|
|
y: coords.y,
|
|
z: coords.z,
|
|
});
|
|
};
|
|
|
|
// NOTE: GPUs are always Little Endian.
|
|
// Make sure to respect that when we create color values from bytes.
|
|
match self.texture_descriptor.format {
|
|
TextureFormat::Rgba8UnormSrgb => Ok(Color::srgba(
|
|
bytes[0] as f32 / u8::MAX as f32,
|
|
bytes[1] as f32 / u8::MAX as f32,
|
|
bytes[2] as f32 / u8::MAX as f32,
|
|
bytes[3] as f32 / u8::MAX as f32,
|
|
)),
|
|
TextureFormat::Rgba8Unorm | TextureFormat::Rgba8Uint => Ok(Color::linear_rgba(
|
|
bytes[0] as f32 / u8::MAX as f32,
|
|
bytes[1] as f32 / u8::MAX as f32,
|
|
bytes[2] as f32 / u8::MAX as f32,
|
|
bytes[3] as f32 / u8::MAX as f32,
|
|
)),
|
|
TextureFormat::Bgra8UnormSrgb => Ok(Color::srgba(
|
|
bytes[2] as f32 / u8::MAX as f32,
|
|
bytes[1] as f32 / u8::MAX as f32,
|
|
bytes[0] as f32 / u8::MAX as f32,
|
|
bytes[3] as f32 / u8::MAX as f32,
|
|
)),
|
|
TextureFormat::Bgra8Unorm => Ok(Color::linear_rgba(
|
|
bytes[2] as f32 / u8::MAX as f32,
|
|
bytes[1] as f32 / u8::MAX as f32,
|
|
bytes[0] as f32 / u8::MAX as f32,
|
|
bytes[3] as f32 / u8::MAX as f32,
|
|
)),
|
|
TextureFormat::Rgba32Float => Ok(Color::linear_rgba(
|
|
f32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]),
|
|
f32::from_le_bytes([bytes[4], bytes[5], bytes[6], bytes[7]]),
|
|
f32::from_le_bytes([bytes[8], bytes[9], bytes[10], bytes[11]]),
|
|
f32::from_le_bytes([bytes[12], bytes[13], bytes[14], bytes[15]]),
|
|
)),
|
|
TextureFormat::Rgba16Float => Ok(Color::linear_rgba(
|
|
half::f16::from_le_bytes([bytes[0], bytes[1]]).to_f32(),
|
|
half::f16::from_le_bytes([bytes[2], bytes[3]]).to_f32(),
|
|
half::f16::from_le_bytes([bytes[4], bytes[5]]).to_f32(),
|
|
half::f16::from_le_bytes([bytes[6], bytes[7]]).to_f32(),
|
|
)),
|
|
TextureFormat::Rgba16Unorm | TextureFormat::Rgba16Uint => {
|
|
let (r, g, b, a) = (
|
|
u16::from_le_bytes([bytes[0], bytes[1]]),
|
|
u16::from_le_bytes([bytes[2], bytes[3]]),
|
|
u16::from_le_bytes([bytes[4], bytes[5]]),
|
|
u16::from_le_bytes([bytes[6], bytes[7]]),
|
|
);
|
|
Ok(Color::linear_rgba(
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
(r as f64 / u16::MAX as f64) as f32,
|
|
(g as f64 / u16::MAX as f64) as f32,
|
|
(b as f64 / u16::MAX as f64) as f32,
|
|
(a as f64 / u16::MAX as f64) as f32,
|
|
))
|
|
}
|
|
TextureFormat::Rgba32Uint => {
|
|
let (r, g, b, a) = (
|
|
u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]),
|
|
u32::from_le_bytes([bytes[4], bytes[5], bytes[6], bytes[7]]),
|
|
u32::from_le_bytes([bytes[8], bytes[9], bytes[10], bytes[11]]),
|
|
u32::from_le_bytes([bytes[12], bytes[13], bytes[14], bytes[15]]),
|
|
);
|
|
Ok(Color::linear_rgba(
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
(r as f64 / u32::MAX as f64) as f32,
|
|
(g as f64 / u32::MAX as f64) as f32,
|
|
(b as f64 / u32::MAX as f64) as f32,
|
|
(a as f64 / u32::MAX as f64) as f32,
|
|
))
|
|
}
|
|
// assume R-only texture format means grayscale (linear)
|
|
// copy value to all of RGB in Color
|
|
TextureFormat::R8Unorm | TextureFormat::R8Uint => {
|
|
let x = bytes[0] as f32 / u8::MAX as f32;
|
|
Ok(Color::linear_rgb(x, x, x))
|
|
}
|
|
TextureFormat::R16Unorm | TextureFormat::R16Uint => {
|
|
let x = u16::from_le_bytes([bytes[0], bytes[1]]);
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
let x = (x as f64 / u16::MAX as f64) as f32;
|
|
Ok(Color::linear_rgb(x, x, x))
|
|
}
|
|
TextureFormat::R32Uint => {
|
|
let x = u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
let x = (x as f64 / u32::MAX as f64) as f32;
|
|
Ok(Color::linear_rgb(x, x, x))
|
|
}
|
|
TextureFormat::R16Float => {
|
|
let x = half::f16::from_le_bytes([bytes[0], bytes[1]]).to_f32();
|
|
Ok(Color::linear_rgb(x, x, x))
|
|
}
|
|
TextureFormat::R32Float => {
|
|
let x = f32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
|
|
Ok(Color::linear_rgb(x, x, x))
|
|
}
|
|
TextureFormat::Rg8Unorm | TextureFormat::Rg8Uint => {
|
|
let r = bytes[0] as f32 / u8::MAX as f32;
|
|
let g = bytes[1] as f32 / u8::MAX as f32;
|
|
Ok(Color::linear_rgb(r, g, 0.0))
|
|
}
|
|
TextureFormat::Rg16Unorm | TextureFormat::Rg16Uint => {
|
|
let r = u16::from_le_bytes([bytes[0], bytes[1]]);
|
|
let g = u16::from_le_bytes([bytes[2], bytes[3]]);
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
let r = (r as f64 / u16::MAX as f64) as f32;
|
|
let g = (g as f64 / u16::MAX as f64) as f32;
|
|
Ok(Color::linear_rgb(r, g, 0.0))
|
|
}
|
|
TextureFormat::Rg32Uint => {
|
|
let r = u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
|
|
let g = u32::from_le_bytes([bytes[4], bytes[5], bytes[6], bytes[7]]);
|
|
// going via f64 to avoid rounding errors with large numbers and division
|
|
let r = (r as f64 / u32::MAX as f64) as f32;
|
|
let g = (g as f64 / u32::MAX as f64) as f32;
|
|
Ok(Color::linear_rgb(r, g, 0.0))
|
|
}
|
|
TextureFormat::Rg16Float => {
|
|
let r = half::f16::from_le_bytes([bytes[0], bytes[1]]).to_f32();
|
|
let g = half::f16::from_le_bytes([bytes[2], bytes[3]]).to_f32();
|
|
Ok(Color::linear_rgb(r, g, 0.0))
|
|
}
|
|
TextureFormat::Rg32Float => {
|
|
let r = f32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
|
|
let g = f32::from_le_bytes([bytes[4], bytes[5], bytes[6], bytes[7]]);
|
|
Ok(Color::linear_rgb(r, g, 0.0))
|
|
}
|
|
_ => Err(TextureAccessError::UnsupportedTextureFormat(
|
|
self.texture_descriptor.format,
|
|
)),
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn set_color_at_internal(
|
|
&mut self,
|
|
coords: UVec3,
|
|
color: Color,
|
|
) -> Result<(), TextureAccessError> {
|
|
let format = self.texture_descriptor.format;
|
|
|
|
let Some(bytes) = self.pixel_bytes_mut(coords) else {
|
|
return Err(TextureAccessError::OutOfBounds {
|
|
x: coords.x,
|
|
y: coords.y,
|
|
z: coords.z,
|
|
});
|
|
};
|
|
|
|
// NOTE: GPUs are always Little Endian.
|
|
// Make sure to respect that when we convert color values to bytes.
|
|
match format {
|
|
TextureFormat::Rgba8UnormSrgb => {
|
|
let [r, g, b, a] = Srgba::from(color).to_f32_array();
|
|
bytes[0] = (r * u8::MAX as f32) as u8;
|
|
bytes[1] = (g * u8::MAX as f32) as u8;
|
|
bytes[2] = (b * u8::MAX as f32) as u8;
|
|
bytes[3] = (a * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::Rgba8Unorm | TextureFormat::Rgba8Uint => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0] = (r * u8::MAX as f32) as u8;
|
|
bytes[1] = (g * u8::MAX as f32) as u8;
|
|
bytes[2] = (b * u8::MAX as f32) as u8;
|
|
bytes[3] = (a * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::Bgra8UnormSrgb => {
|
|
let [r, g, b, a] = Srgba::from(color).to_f32_array();
|
|
bytes[0] = (b * u8::MAX as f32) as u8;
|
|
bytes[1] = (g * u8::MAX as f32) as u8;
|
|
bytes[2] = (r * u8::MAX as f32) as u8;
|
|
bytes[3] = (a * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::Bgra8Unorm => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0] = (b * u8::MAX as f32) as u8;
|
|
bytes[1] = (g * u8::MAX as f32) as u8;
|
|
bytes[2] = (r * u8::MAX as f32) as u8;
|
|
bytes[3] = (a * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::Rgba16Float => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0..2].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(r)));
|
|
bytes[2..4].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(g)));
|
|
bytes[4..6].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(b)));
|
|
bytes[6..8].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(a)));
|
|
}
|
|
TextureFormat::Rgba32Float => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0..4].copy_from_slice(&f32::to_le_bytes(r));
|
|
bytes[4..8].copy_from_slice(&f32::to_le_bytes(g));
|
|
bytes[8..12].copy_from_slice(&f32::to_le_bytes(b));
|
|
bytes[12..16].copy_from_slice(&f32::to_le_bytes(a));
|
|
}
|
|
TextureFormat::Rgba16Unorm | TextureFormat::Rgba16Uint => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
let [r, g, b, a] = [
|
|
(r * u16::MAX as f32) as u16,
|
|
(g * u16::MAX as f32) as u16,
|
|
(b * u16::MAX as f32) as u16,
|
|
(a * u16::MAX as f32) as u16,
|
|
];
|
|
bytes[0..2].copy_from_slice(&u16::to_le_bytes(r));
|
|
bytes[2..4].copy_from_slice(&u16::to_le_bytes(g));
|
|
bytes[4..6].copy_from_slice(&u16::to_le_bytes(b));
|
|
bytes[6..8].copy_from_slice(&u16::to_le_bytes(a));
|
|
}
|
|
TextureFormat::Rgba32Uint => {
|
|
let [r, g, b, a] = LinearRgba::from(color).to_f32_array();
|
|
let [r, g, b, a] = [
|
|
(r * u32::MAX as f32) as u32,
|
|
(g * u32::MAX as f32) as u32,
|
|
(b * u32::MAX as f32) as u32,
|
|
(a * u32::MAX as f32) as u32,
|
|
];
|
|
bytes[0..4].copy_from_slice(&u32::to_le_bytes(r));
|
|
bytes[4..8].copy_from_slice(&u32::to_le_bytes(g));
|
|
bytes[8..12].copy_from_slice(&u32::to_le_bytes(b));
|
|
bytes[12..16].copy_from_slice(&u32::to_le_bytes(a));
|
|
}
|
|
TextureFormat::R8Unorm | TextureFormat::R8Uint => {
|
|
// Convert to grayscale with minimal loss if color is already gray
|
|
let linear = LinearRgba::from(color);
|
|
let luminance = Xyza::from(linear).y;
|
|
let [r, _, _, _] = LinearRgba::gray(luminance).to_f32_array();
|
|
bytes[0] = (r * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::R16Unorm | TextureFormat::R16Uint => {
|
|
// Convert to grayscale with minimal loss if color is already gray
|
|
let linear = LinearRgba::from(color);
|
|
let luminance = Xyza::from(linear).y;
|
|
let [r, _, _, _] = LinearRgba::gray(luminance).to_f32_array();
|
|
let r = (r * u16::MAX as f32) as u16;
|
|
bytes[0..2].copy_from_slice(&u16::to_le_bytes(r));
|
|
}
|
|
TextureFormat::R32Uint => {
|
|
// Convert to grayscale with minimal loss if color is already gray
|
|
let linear = LinearRgba::from(color);
|
|
let luminance = Xyza::from(linear).y;
|
|
let [r, _, _, _] = LinearRgba::gray(luminance).to_f32_array();
|
|
// go via f64 to avoid imprecision
|
|
let r = (r as f64 * u32::MAX as f64) as u32;
|
|
bytes[0..4].copy_from_slice(&u32::to_le_bytes(r));
|
|
}
|
|
TextureFormat::R16Float => {
|
|
// Convert to grayscale with minimal loss if color is already gray
|
|
let linear = LinearRgba::from(color);
|
|
let luminance = Xyza::from(linear).y;
|
|
let [r, _, _, _] = LinearRgba::gray(luminance).to_f32_array();
|
|
let x = half::f16::from_f32(r);
|
|
bytes[0..2].copy_from_slice(&half::f16::to_le_bytes(x));
|
|
}
|
|
TextureFormat::R32Float => {
|
|
// Convert to grayscale with minimal loss if color is already gray
|
|
let linear = LinearRgba::from(color);
|
|
let luminance = Xyza::from(linear).y;
|
|
let [r, _, _, _] = LinearRgba::gray(luminance).to_f32_array();
|
|
bytes[0..4].copy_from_slice(&f32::to_le_bytes(r));
|
|
}
|
|
TextureFormat::Rg8Unorm | TextureFormat::Rg8Uint => {
|
|
let [r, g, _, _] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0] = (r * u8::MAX as f32) as u8;
|
|
bytes[1] = (g * u8::MAX as f32) as u8;
|
|
}
|
|
TextureFormat::Rg16Unorm | TextureFormat::Rg16Uint => {
|
|
let [r, g, _, _] = LinearRgba::from(color).to_f32_array();
|
|
let r = (r * u16::MAX as f32) as u16;
|
|
let g = (g * u16::MAX as f32) as u16;
|
|
bytes[0..2].copy_from_slice(&u16::to_le_bytes(r));
|
|
bytes[2..4].copy_from_slice(&u16::to_le_bytes(g));
|
|
}
|
|
TextureFormat::Rg32Uint => {
|
|
let [r, g, _, _] = LinearRgba::from(color).to_f32_array();
|
|
// go via f64 to avoid imprecision
|
|
let r = (r as f64 * u32::MAX as f64) as u32;
|
|
let g = (g as f64 * u32::MAX as f64) as u32;
|
|
bytes[0..4].copy_from_slice(&u32::to_le_bytes(r));
|
|
bytes[4..8].copy_from_slice(&u32::to_le_bytes(g));
|
|
}
|
|
TextureFormat::Rg16Float => {
|
|
let [r, g, _, _] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0..2].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(r)));
|
|
bytes[2..4].copy_from_slice(&half::f16::to_le_bytes(half::f16::from_f32(g)));
|
|
}
|
|
TextureFormat::Rg32Float => {
|
|
let [r, g, _, _] = LinearRgba::from(color).to_f32_array();
|
|
bytes[0..4].copy_from_slice(&f32::to_le_bytes(r));
|
|
bytes[4..8].copy_from_slice(&f32::to_le_bytes(g));
|
|
}
|
|
_ => {
|
|
return Err(TextureAccessError::UnsupportedTextureFormat(
|
|
self.texture_descriptor.format,
|
|
));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum DataFormat {
|
|
Rgb,
|
|
Rgba,
|
|
Rrr,
|
|
Rrrg,
|
|
Rg,
|
|
}
|
|
|
|
/// Texture data need to be transcoded from this format for use with `wgpu`.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum TranscodeFormat {
|
|
Etc1s,
|
|
Uastc(DataFormat),
|
|
// Has to be transcoded to R8Unorm for use with `wgpu`.
|
|
R8UnormSrgb,
|
|
// Has to be transcoded to R8G8Unorm for use with `wgpu`.
|
|
Rg8UnormSrgb,
|
|
// Has to be transcoded to Rgba8 for use with `wgpu`.
|
|
Rgb8,
|
|
}
|
|
|
|
/// An error that occurs when accessing specific pixels in a texture.
|
|
#[derive(Error, Debug)]
|
|
pub enum TextureAccessError {
|
|
#[error("out of bounds (x: {x}, y: {y}, z: {z})")]
|
|
OutOfBounds { x: u32, y: u32, z: u32 },
|
|
#[error("unsupported texture format: {0:?}")]
|
|
UnsupportedTextureFormat(TextureFormat),
|
|
#[error("attempt to access texture with different dimension")]
|
|
WrongDimension,
|
|
}
|
|
|
|
/// An error that occurs when loading a texture.
|
|
#[derive(Error, Debug)]
|
|
pub enum TextureError {
|
|
/// Image MIME type is invalid.
|
|
#[error("invalid image mime type: {0}")]
|
|
InvalidImageMimeType(String),
|
|
/// Image extension is invalid.
|
|
#[error("invalid image extension: {0}")]
|
|
InvalidImageExtension(String),
|
|
/// Failed to load an image.
|
|
#[error("failed to load an image: {0}")]
|
|
ImageError(#[from] image::ImageError),
|
|
/// Texture format isn't supported.
|
|
#[error("unsupported texture format: {0}")]
|
|
UnsupportedTextureFormat(String),
|
|
/// Supercompression isn't supported.
|
|
#[error("supercompression not supported: {0}")]
|
|
SuperCompressionNotSupported(String),
|
|
/// Failed to decompress an image.
|
|
#[error("failed to decompress an image: {0}")]
|
|
SuperDecompressionError(String),
|
|
/// Invalid data.
|
|
#[error("invalid data: {0}")]
|
|
InvalidData(String),
|
|
/// Transcode error.
|
|
#[error("transcode error: {0}")]
|
|
TranscodeError(String),
|
|
/// Format requires transcoding.
|
|
#[error("format requires transcoding: {0:?}")]
|
|
FormatRequiresTranscodingError(TranscodeFormat),
|
|
/// Only cubemaps with six faces are supported.
|
|
#[error("only cubemaps with six faces are supported")]
|
|
IncompleteCubemap,
|
|
}
|
|
|
|
/// An error that occurs when an image cannot be resized.
|
|
#[derive(Error, Debug)]
|
|
pub enum ResizeError {
|
|
/// Failed to resize an Image because it has no data.
|
|
#[error("resize method requires cpu-side image data but none was present")]
|
|
ImageWithoutData,
|
|
}
|
|
|
|
/// The type of a raw image buffer.
|
|
#[derive(Debug)]
|
|
pub enum ImageType<'a> {
|
|
/// The mime type of an image, for example `"image/png"`.
|
|
MimeType(&'a str),
|
|
/// The extension of an image file, for example `"png"`.
|
|
Extension(&'a str),
|
|
/// The direct format of the image
|
|
Format(ImageFormat),
|
|
}
|
|
|
|
impl<'a> ImageType<'a> {
|
|
pub fn to_image_format(&self) -> Result<ImageFormat, TextureError> {
|
|
match self {
|
|
ImageType::MimeType(mime_type) => ImageFormat::from_mime_type(mime_type)
|
|
.ok_or_else(|| TextureError::InvalidImageMimeType(mime_type.to_string())),
|
|
ImageType::Extension(extension) => ImageFormat::from_extension(extension)
|
|
.ok_or_else(|| TextureError::InvalidImageExtension(extension.to_string())),
|
|
ImageType::Format(format) => Ok(*format),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Used to calculate the volume of an item.
|
|
pub trait Volume {
|
|
fn volume(&self) -> usize;
|
|
}
|
|
|
|
impl Volume for Extent3d {
|
|
/// Calculates the volume of the [`Extent3d`].
|
|
fn volume(&self) -> usize {
|
|
(self.width * self.height * self.depth_or_array_layers) as usize
|
|
}
|
|
}
|
|
|
|
/// Extends the wgpu [`TextureFormat`] with information about the pixel.
|
|
pub trait TextureFormatPixelInfo {
|
|
/// Returns the size of a pixel in bytes of the format.
|
|
fn pixel_size(&self) -> usize;
|
|
}
|
|
|
|
impl TextureFormatPixelInfo for TextureFormat {
|
|
fn pixel_size(&self) -> usize {
|
|
let info = self;
|
|
match info.block_dimensions() {
|
|
(1, 1) => info.block_copy_size(None).unwrap() as usize,
|
|
_ => panic!("Using pixel_size for compressed textures is invalid"),
|
|
}
|
|
}
|
|
}
|
|
|
|
bitflags::bitflags! {
|
|
#[derive(Default, Clone, Copy, Eq, PartialEq, Debug)]
|
|
#[repr(transparent)]
|
|
pub struct CompressedImageFormats: u32 {
|
|
const NONE = 0;
|
|
const ASTC_LDR = 1 << 0;
|
|
const BC = 1 << 1;
|
|
const ETC2 = 1 << 2;
|
|
}
|
|
}
|
|
|
|
impl CompressedImageFormats {
|
|
pub fn from_features(features: Features) -> Self {
|
|
let mut supported_compressed_formats = Self::default();
|
|
if features.contains(Features::TEXTURE_COMPRESSION_ASTC) {
|
|
supported_compressed_formats |= Self::ASTC_LDR;
|
|
}
|
|
if features.contains(Features::TEXTURE_COMPRESSION_BC) {
|
|
supported_compressed_formats |= Self::BC;
|
|
}
|
|
if features.contains(Features::TEXTURE_COMPRESSION_ETC2) {
|
|
supported_compressed_formats |= Self::ETC2;
|
|
}
|
|
supported_compressed_formats
|
|
}
|
|
|
|
pub fn supports(&self, format: TextureFormat) -> bool {
|
|
match format {
|
|
TextureFormat::Bc1RgbaUnorm
|
|
| TextureFormat::Bc1RgbaUnormSrgb
|
|
| TextureFormat::Bc2RgbaUnorm
|
|
| TextureFormat::Bc2RgbaUnormSrgb
|
|
| TextureFormat::Bc3RgbaUnorm
|
|
| TextureFormat::Bc3RgbaUnormSrgb
|
|
| TextureFormat::Bc4RUnorm
|
|
| TextureFormat::Bc4RSnorm
|
|
| TextureFormat::Bc5RgUnorm
|
|
| TextureFormat::Bc5RgSnorm
|
|
| TextureFormat::Bc6hRgbUfloat
|
|
| TextureFormat::Bc6hRgbFloat
|
|
| TextureFormat::Bc7RgbaUnorm
|
|
| TextureFormat::Bc7RgbaUnormSrgb => self.contains(CompressedImageFormats::BC),
|
|
TextureFormat::Etc2Rgb8Unorm
|
|
| TextureFormat::Etc2Rgb8UnormSrgb
|
|
| TextureFormat::Etc2Rgb8A1Unorm
|
|
| TextureFormat::Etc2Rgb8A1UnormSrgb
|
|
| TextureFormat::Etc2Rgba8Unorm
|
|
| TextureFormat::Etc2Rgba8UnormSrgb
|
|
| TextureFormat::EacR11Unorm
|
|
| TextureFormat::EacR11Snorm
|
|
| TextureFormat::EacRg11Unorm
|
|
| TextureFormat::EacRg11Snorm => self.contains(CompressedImageFormats::ETC2),
|
|
TextureFormat::Astc { .. } => self.contains(CompressedImageFormats::ASTC_LDR),
|
|
_ => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For defining which compressed image formats are supported. This will be initialized from available device features
|
|
/// in `finish()` of the bevy `RenderPlugin`, but is left for the user to specify if not using the `RenderPlugin`, or
|
|
/// the WGPU backend.
|
|
#[derive(Resource)]
|
|
pub struct CompressedImageFormatSupport(pub CompressedImageFormats);
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn image_size() {
|
|
let size = Extent3d {
|
|
width: 200,
|
|
height: 100,
|
|
depth_or_array_layers: 1,
|
|
};
|
|
let image = Image::new_fill(
|
|
size,
|
|
TextureDimension::D2,
|
|
&[0, 0, 0, 255],
|
|
TextureFormat::Rgba8Unorm,
|
|
RenderAssetUsages::MAIN_WORLD,
|
|
);
|
|
assert_eq!(
|
|
Vec2::new(size.width as f32, size.height as f32),
|
|
image.size_f32()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn image_default_size() {
|
|
let image = Image::default();
|
|
assert_eq!(UVec2::ONE, image.size());
|
|
assert_eq!(Vec2::ONE, image.size_f32());
|
|
}
|
|
|
|
#[test]
|
|
fn on_edge_pixel_is_invalid() {
|
|
let image = Image::new_fill(
|
|
Extent3d {
|
|
width: 5,
|
|
height: 10,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
&[0, 0, 0, 255],
|
|
TextureFormat::Rgba8Unorm,
|
|
RenderAssetUsages::MAIN_WORLD,
|
|
);
|
|
assert!(matches!(image.get_color_at(4, 9), Ok(Color::BLACK)));
|
|
assert!(matches!(
|
|
image.get_color_at(0, 10),
|
|
Err(TextureAccessError::OutOfBounds { x: 0, y: 10, z: 0 })
|
|
));
|
|
assert!(matches!(
|
|
image.get_color_at(5, 10),
|
|
Err(TextureAccessError::OutOfBounds { x: 5, y: 10, z: 0 })
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn get_set_pixel_2d_with_layers() {
|
|
let mut image = Image::new_fill(
|
|
Extent3d {
|
|
width: 5,
|
|
height: 10,
|
|
depth_or_array_layers: 3,
|
|
},
|
|
TextureDimension::D2,
|
|
&[0, 0, 0, 255],
|
|
TextureFormat::Rgba8Unorm,
|
|
RenderAssetUsages::MAIN_WORLD,
|
|
);
|
|
image.set_color_at_3d(0, 0, 0, Color::WHITE).unwrap();
|
|
assert!(matches!(image.get_color_at_3d(0, 0, 0), Ok(Color::WHITE)));
|
|
image.set_color_at_3d(2, 3, 1, Color::WHITE).unwrap();
|
|
assert!(matches!(image.get_color_at_3d(2, 3, 1), Ok(Color::WHITE)));
|
|
image.set_color_at_3d(4, 9, 2, Color::WHITE).unwrap();
|
|
assert!(matches!(image.get_color_at_3d(4, 9, 2), Ok(Color::WHITE)));
|
|
}
|
|
|
|
#[test]
|
|
fn resize_in_place_2d_grow_and_shrink() {
|
|
use bevy_color::ColorToPacked;
|
|
|
|
const INITIAL_FILL: LinearRgba = LinearRgba::BLACK;
|
|
const GROW_FILL: LinearRgba = LinearRgba::NONE;
|
|
|
|
let mut image = Image::new_fill(
|
|
Extent3d {
|
|
width: 2,
|
|
height: 2,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
&INITIAL_FILL.to_u8_array(),
|
|
TextureFormat::Rgba8Unorm,
|
|
RenderAssetUsages::MAIN_WORLD,
|
|
);
|
|
|
|
// Create a test pattern
|
|
|
|
const TEST_PIXELS: [(u32, u32, LinearRgba); 3] = [
|
|
(0, 1, LinearRgba::RED),
|
|
(1, 1, LinearRgba::GREEN),
|
|
(1, 0, LinearRgba::BLUE),
|
|
];
|
|
|
|
for (x, y, color) in &TEST_PIXELS {
|
|
image.set_color_at(*x, *y, Color::from(*color)).unwrap();
|
|
}
|
|
|
|
// Grow image
|
|
image
|
|
.resize_in_place(Extent3d {
|
|
width: 4,
|
|
height: 4,
|
|
depth_or_array_layers: 1,
|
|
})
|
|
.unwrap();
|
|
|
|
// After growing, the test pattern should be the same.
|
|
assert!(matches!(
|
|
image.get_color_at(0, 0),
|
|
Ok(Color::LinearRgba(INITIAL_FILL))
|
|
));
|
|
for (x, y, color) in &TEST_PIXELS {
|
|
assert_eq!(
|
|
image.get_color_at(*x, *y).unwrap(),
|
|
Color::LinearRgba(*color)
|
|
);
|
|
}
|
|
|
|
// Pixels in the newly added area should get filled with zeroes.
|
|
assert!(matches!(
|
|
image.get_color_at(3, 3),
|
|
Ok(Color::LinearRgba(GROW_FILL))
|
|
));
|
|
|
|
// Shrink
|
|
image
|
|
.resize_in_place(Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 1,
|
|
})
|
|
.unwrap();
|
|
|
|
// Images outside of the new dimensions should be clipped
|
|
assert!(image.get_color_at(1, 1).is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn resize_in_place_array_grow_and_shrink() {
|
|
use bevy_color::ColorToPacked;
|
|
|
|
const INITIAL_FILL: LinearRgba = LinearRgba::BLACK;
|
|
const GROW_FILL: LinearRgba = LinearRgba::NONE;
|
|
const LAYERS: u32 = 4;
|
|
|
|
let mut image = Image::new_fill(
|
|
Extent3d {
|
|
width: 2,
|
|
height: 2,
|
|
depth_or_array_layers: LAYERS,
|
|
},
|
|
TextureDimension::D2,
|
|
&INITIAL_FILL.to_u8_array(),
|
|
TextureFormat::Rgba8Unorm,
|
|
RenderAssetUsages::MAIN_WORLD,
|
|
);
|
|
|
|
// Create a test pattern
|
|
|
|
const TEST_PIXELS: [(u32, u32, LinearRgba); 3] = [
|
|
(0, 1, LinearRgba::RED),
|
|
(1, 1, LinearRgba::GREEN),
|
|
(1, 0, LinearRgba::BLUE),
|
|
];
|
|
|
|
for z in 0..LAYERS {
|
|
for (x, y, color) in &TEST_PIXELS {
|
|
image
|
|
.set_color_at_3d(*x, *y, z, Color::from(*color))
|
|
.unwrap();
|
|
}
|
|
}
|
|
|
|
// Grow image
|
|
image
|
|
.resize_in_place(Extent3d {
|
|
width: 4,
|
|
height: 4,
|
|
depth_or_array_layers: LAYERS + 1,
|
|
})
|
|
.unwrap();
|
|
|
|
// After growing, the test pattern should be the same.
|
|
assert!(matches!(
|
|
image.get_color_at(0, 0),
|
|
Ok(Color::LinearRgba(INITIAL_FILL))
|
|
));
|
|
for z in 0..LAYERS {
|
|
for (x, y, color) in &TEST_PIXELS {
|
|
assert_eq!(
|
|
image.get_color_at_3d(*x, *y, z).unwrap(),
|
|
Color::LinearRgba(*color)
|
|
);
|
|
}
|
|
}
|
|
|
|
// Pixels in the newly added area should get filled with zeroes.
|
|
for z in 0..(LAYERS + 1) {
|
|
assert!(matches!(
|
|
image.get_color_at_3d(3, 3, z),
|
|
Ok(Color::LinearRgba(GROW_FILL))
|
|
));
|
|
}
|
|
|
|
// Shrink
|
|
image
|
|
.resize_in_place(Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 1,
|
|
})
|
|
.unwrap();
|
|
|
|
// Images outside of the new dimensions should be clipped
|
|
assert!(image.get_color_at_3d(1, 1, 0).is_err());
|
|
|
|
// Higher layers should no longer be present
|
|
assert!(image.get_color_at_3d(0, 0, 1).is_err());
|
|
|
|
// Grow layers
|
|
image
|
|
.resize_in_place(Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 2,
|
|
})
|
|
.unwrap();
|
|
|
|
// Pixels in the newly added layer should be zeroes.
|
|
assert!(matches!(
|
|
image.get_color_at_3d(0, 0, 1),
|
|
Ok(Color::LinearRgba(GROW_FILL))
|
|
));
|
|
}
|
|
}
|