 6c78c7b434
			
		
	
	
		6c78c7b434
		
			
		
	
	
	
	
		
			
			# Objective Since `align` was introduced, it has been reworked to allow the input of `Dir3` instead of `Vec3`, and we also introduced random sampling for points on a sphere and then for `Dir3`. Previously, this example rolled its own random generation, but it doesn't need to any more. ## Solution Refactor the 'align' example to use `Dir3` instead of `Vec3`, using the `bevy_math` API for random directions.
		
			
				
	
	
		
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.
 | |
| 
 | |
| use bevy::color::palettes::basic::{GRAY, RED, WHITE};
 | |
| use bevy::input::mouse::{MouseButtonInput, MouseMotion};
 | |
| use bevy::prelude::*;
 | |
| use rand::{Rng, SeedableRng};
 | |
| use rand_chacha::ChaCha8Rng;
 | |
| 
 | |
| fn main() {
 | |
|     App::new()
 | |
|         .add_plugins(DefaultPlugins)
 | |
|         .add_systems(Startup, setup)
 | |
|         .add_systems(Update, (draw_cube_axes, draw_random_axes))
 | |
|         .add_systems(Update, (handle_keypress, handle_mouse, rotate_cube).chain())
 | |
|         .run();
 | |
| }
 | |
| 
 | |
| /// This struct stores metadata for a single rotational move of the cube
 | |
| #[derive(Component, Default)]
 | |
| struct Cube {
 | |
|     /// The initial transform of the cube move, the starting point of interpolation
 | |
|     initial_transform: Transform,
 | |
| 
 | |
|     /// The target transform of the cube move, the endpoint of interpolation
 | |
|     target_transform: Transform,
 | |
| 
 | |
|     /// The progress of the cube move in percentage points
 | |
|     progress: u16,
 | |
| 
 | |
|     /// Whether the cube is currently in motion; allows motion to be paused
 | |
|     in_motion: bool,
 | |
| }
 | |
| 
 | |
| #[derive(Component)]
 | |
| struct RandomAxes(Dir3, Dir3);
 | |
| 
 | |
| #[derive(Component)]
 | |
| struct Instructions;
 | |
| 
 | |
| #[derive(Resource)]
 | |
| struct MousePressed(bool);
 | |
| 
 | |
| #[derive(Resource)]
 | |
| struct SeededRng(ChaCha8Rng);
 | |
| 
 | |
| // Setup
 | |
| 
 | |
| fn setup(
 | |
|     mut commands: Commands,
 | |
|     mut meshes: ResMut<Assets<Mesh>>,
 | |
|     mut materials: ResMut<Assets<StandardMaterial>>,
 | |
| ) {
 | |
|     // We're seeding the PRNG here to make this example deterministic for testing purposes.
 | |
|     // This isn't strictly required in practical use unless you need your app to be deterministic.
 | |
|     let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
 | |
| 
 | |
|     // A camera looking at the origin
 | |
|     commands.spawn(Camera3dBundle {
 | |
|         transform: Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     // A plane that we can sit on top of
 | |
|     commands.spawn(PbrBundle {
 | |
|         transform: Transform::from_xyz(0., -2., 0.),
 | |
|         mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
 | |
|         material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     // A light source
 | |
|     commands.spawn(PointLightBundle {
 | |
|         point_light: PointLight {
 | |
|             shadows_enabled: true,
 | |
|             ..default()
 | |
|         },
 | |
|         transform: Transform::from_xyz(4.0, 7.0, -4.0),
 | |
|         ..default()
 | |
|     });
 | |
| 
 | |
|     // Initialize random axes
 | |
|     let first = seeded_rng.gen();
 | |
|     let second = seeded_rng.gen();
 | |
|     commands.spawn(RandomAxes(first, second));
 | |
| 
 | |
|     // Finally, our cube that is going to rotate
 | |
|     commands.spawn((
 | |
|         PbrBundle {
 | |
|             mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
 | |
|             material: materials.add(Color::srgb(0.5, 0.5, 0.5)),
 | |
|             ..default()
 | |
|         },
 | |
|         Cube {
 | |
|             initial_transform: Transform::IDENTITY,
 | |
|             target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
 | |
|             ..default()
 | |
|         },
 | |
|     ));
 | |
| 
 | |
|     // Instructions for the example
 | |
|     commands.spawn((
 | |
|         TextBundle::from_section(
 | |
|             "The bright red axis is the primary alignment axis, and it will always be\n\
 | |
|             made to coincide with the primary target direction (white) exactly.\n\
 | |
|             The fainter red axis is the secondary alignment axis, and it is made to\n\
 | |
|             line up with the secondary target direction (gray) as closely as possible.\n\
 | |
|             Press 'R' to generate random target directions.\n\
 | |
|             Press 'T' to align the cube to those directions.\n\
 | |
|             Click and drag the mouse to rotate the camera.\n\
 | |
|             Press 'H' to hide/show these instructions.",
 | |
|             TextStyle {
 | |
|                 font_size: 20.,
 | |
|                 ..default()
 | |
|             },
 | |
|         )
 | |
|         .with_style(Style {
 | |
|             position_type: PositionType::Absolute,
 | |
|             top: Val::Px(12.0),
 | |
|             left: Val::Px(12.0),
 | |
|             ..default()
 | |
|         }),
 | |
|         Instructions,
 | |
|     ));
 | |
| 
 | |
|     commands.insert_resource(MousePressed(false));
 | |
|     commands.insert_resource(SeededRng(seeded_rng));
 | |
| }
 | |
| 
 | |
| // Update systems
 | |
| 
 | |
| // Draw the main and secondary axes on the rotating cube
 | |
| fn draw_cube_axes(mut gizmos: Gizmos, query: Query<&Transform, With<Cube>>) {
 | |
|     let cube_transform = query.single();
 | |
| 
 | |
|     // Local X-axis arrow
 | |
|     let x_ends = arrow_ends(cube_transform, Vec3::X, 1.5);
 | |
|     gizmos.arrow(x_ends.0, x_ends.1, RED);
 | |
| 
 | |
|     // local Y-axis arrow
 | |
|     let y_ends = arrow_ends(cube_transform, Vec3::Y, 1.5);
 | |
|     gizmos.arrow(y_ends.0, y_ends.1, Color::srgb(0.65, 0., 0.));
 | |
| }
 | |
| 
 | |
| // Draw the randomly generated axes
 | |
| fn draw_random_axes(mut gizmos: Gizmos, query: Query<&RandomAxes>) {
 | |
|     let RandomAxes(v1, v2) = query.single();
 | |
|     gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
 | |
|     gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
 | |
| }
 | |
| 
 | |
| // Actually update the cube's transform according to its initial source and target
 | |
| fn rotate_cube(mut cube: Query<(&mut Cube, &mut Transform)>) {
 | |
|     let (mut cube, mut cube_transform) = cube.single_mut();
 | |
| 
 | |
|     if !cube.in_motion {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     let start = cube.initial_transform.rotation;
 | |
|     let end = cube.target_transform.rotation;
 | |
| 
 | |
|     let p: f32 = cube.progress.into();
 | |
|     let t = p / 100.;
 | |
| 
 | |
|     *cube_transform = Transform::from_rotation(start.slerp(end, t));
 | |
| 
 | |
|     if cube.progress == 100 {
 | |
|         cube.in_motion = false;
 | |
|     } else {
 | |
|         cube.progress += 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Handle user inputs from the keyboard for dynamically altering the scenario
 | |
| fn handle_keypress(
 | |
|     mut cube: Query<(&mut Cube, &Transform)>,
 | |
|     mut random_axes: Query<&mut RandomAxes>,
 | |
|     mut instructions: Query<&mut Visibility, With<Instructions>>,
 | |
|     keyboard: Res<ButtonInput<KeyCode>>,
 | |
|     mut seeded_rng: ResMut<SeededRng>,
 | |
| ) {
 | |
|     let (mut cube, cube_transform) = cube.single_mut();
 | |
|     let mut random_axes = random_axes.single_mut();
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyR) {
 | |
|         // Randomize the target axes
 | |
|         let first = seeded_rng.0.gen();
 | |
|         let second = seeded_rng.0.gen();
 | |
|         *random_axes = RandomAxes(first, second);
 | |
| 
 | |
|         // Stop the cube and set it up to transform from its present orientation to the new one
 | |
|         cube.in_motion = false;
 | |
|         cube.initial_transform = *cube_transform;
 | |
|         cube.target_transform = random_axes_target_alignment(&random_axes);
 | |
|         cube.progress = 0;
 | |
|     }
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyT) {
 | |
|         cube.in_motion ^= true;
 | |
|     }
 | |
| 
 | |
|     if keyboard.just_pressed(KeyCode::KeyH) {
 | |
|         let mut instructions_viz = instructions.single_mut();
 | |
|         if *instructions_viz == Visibility::Hidden {
 | |
|             *instructions_viz = Visibility::Visible;
 | |
|         } else {
 | |
|             *instructions_viz = Visibility::Hidden;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Handle user mouse input for panning the camera around
 | |
| fn handle_mouse(
 | |
|     mut button_events: EventReader<MouseButtonInput>,
 | |
|     mut motion_events: EventReader<MouseMotion>,
 | |
|     mut camera: Query<&mut Transform, With<Camera>>,
 | |
|     mut mouse_pressed: ResMut<MousePressed>,
 | |
| ) {
 | |
|     // Store left-pressed state in the MousePressed resource
 | |
|     for button_event in button_events.read() {
 | |
|         if button_event.button != MouseButton::Left {
 | |
|             continue;
 | |
|         }
 | |
|         *mouse_pressed = MousePressed(button_event.state.is_pressed());
 | |
|     }
 | |
| 
 | |
|     // If the mouse is not pressed, just ignore motion events
 | |
|     if !mouse_pressed.0 {
 | |
|         return;
 | |
|     }
 | |
|     let displacement = motion_events
 | |
|         .read()
 | |
|         .fold(0., |acc, mouse_motion| acc + mouse_motion.delta.x);
 | |
|     let mut camera_transform = camera.single_mut();
 | |
|     camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
 | |
| }
 | |
| 
 | |
| // Helper functions (i.e. non-system functions)
 | |
| 
 | |
| fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
 | |
|     let local_vector = length * (transform.rotation * axis);
 | |
|     (transform.translation, transform.translation + local_vector)
 | |
| }
 | |
| 
 | |
| // This is where `Transform::align` is actually used!
 | |
| // Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_cube_axes`.
 | |
| fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
 | |
|     let RandomAxes(first, second) = random_axes;
 | |
|     Transform::IDENTITY.aligned_by(Vec3::X, *first, Vec3::Y, *second)
 | |
| }
 |