bevy/crates/bevy_pbr/src/light_probe/environment_map.wgsl
Patrick Walton bf3692a011
Introduce support for mixed lighting by allowing lights to opt out of contributing diffuse light to lightmapped objects. (#16761)
This PR adds support for *mixed lighting* to Bevy, whereby some parts of
the scene are lightmapped, while others take part in real-time lighting.
(Here *real-time lighting* means lighting at runtime via the PBR shader,
as opposed to precomputed light using lightmaps.) It does so by adding a
new field, `affects_lightmapped_meshes` to `IrradianceVolume` and
`AmbientLight`, and a corresponding field
`affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`,
`SpotLight`, and `EnvironmentMapLight`. By default, this value is set to
true; when set to false, the light contributes nothing to the diffuse
irradiance component to meshes with lightmaps.

Note that specular light is unaffected. This is because the correct way
to bake specular lighting is *directional lightmaps*, which we have no
support for yet.

There are two general ways I expect this field to be used:

1. When diffuse indirect light is baked into lightmaps, irradiance
volumes and reflection probes shouldn't contribute any diffuse light to
the static geometry that has a lightmap. That's because the baking tool
should have already accounted for it, and in a higher-quality fashion,
as lightmaps typically offer a higher effective texture resolution than
the light probe does.

2. When direct diffuse light is baked into a lightmap, punctual lights
shouldn't contribute any diffuse light to static geometry with a
lightmap, to avoid double-counting. It may seem odd to bake *direct*
light into a lightmap, as opposed to indirect light. But there is a use
case: in a scene with many lights, avoiding light leaks requires shadow
mapping, which quickly becomes prohibitive when many lights are
involved. Baking lightmaps allows light leaks to be eliminated on static
geometry.

A new example, `mixed_lighting`, has been added. It demonstrates a sofa
(model from the [glTF Sample Assets]) that has been lightmapped offline
using [Bakery]. It has four modes:

1. In *baked* mode, all objects are locked in place, and all the diffuse
direct and indirect light has been calculated ahead of time. Note that
the bottom of the sphere has a red tint from the sofa, illustrating that
the baking tool captured indirect light for it.

2. In *mixed direct* mode, lightmaps capturing diffuse direct and
indirect light have been pre-calculated for the static objects, but the
dynamic sphere has real-time lighting. Note that, because the diffuse
lighting has been entirely pre-calculated for the scenery, the dynamic
sphere casts no shadow. In a real app, you would typically use real-time
lighting for the most important light so that dynamic objects can shadow
the scenery and relegate baked lighting to the less important lights for
which shadows aren't as important. Also note that there is no red tint
on the sphere, because there is no global illumination applied to it. In
an actual game, you could fix this problem by supplementing the
lightmapped objects with an irradiance volume.

3. In *mixed indirect* mode, all direct light is calculated in
real-time, and the static objects have pre-calculated indirect lighting.
This corresponds to the mode that most applications are expected to use.
Because direct light on the scenery is computed dynamically, shadows are
fully supported. As in mixed direct mode, there is no global
illumination on the sphere; in a real application, irradiance volumes
could be used to supplement the lightmaps.

4. In *real-time* mode, no lightmaps are used at all, and all punctual
lights are rendered in real-time. No global illumination exists.

In the example, you can click around to move the sphere, unless you're
in baked mode, in which case the sphere must be locked in place to be
lit correctly.

## Showcase

Baked mode:
![Screenshot 2024-12-13
112926](https://github.com/user-attachments/assets/cc00d84e-abd7-4117-97e9-17267d815c6a)

Mixed direct mode:
![Screenshot 2024-12-13
112933](https://github.com/user-attachments/assets/49997305-349a-4f6a-b451-8cccbb469889)

Mixed indirect mode (default):
![Screenshot 2024-12-13
112939](https://github.com/user-attachments/assets/0f4f6d8a-998f-474b-9fa5-fe4c212c921c)

Real-time mode:
![Screenshot 2024-12-13
112944](https://github.com/user-attachments/assets/fdbc4535-d902-4ba0-bfbc-f5c7b723fac8)

## Migration guide

* The `AmbientLight` resource, the `IrradianceVolume` component, and the
`EnvironmentMapLight` component now have `affects_lightmapped_meshes`
fields. If you don't need to use that field (for example, if you aren't
using lightmaps), you can safely set the field to true.
* `DirectionalLight`, `PointLight`, and `SpotLight` now have
`affects_lightmapped_mesh_diffuse` fields. If you don't need to use that
field (for example, if you aren't using lightmaps), you can safely set
the field to true.

[glTF Sample Assets]:
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main

[Bakery]:
https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
2024-12-16 23:48:33 +00:00

282 lines
11 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::environment_map
#import bevy_pbr::light_probe::query_light_probe
#import bevy_pbr::mesh_view_bindings as bindings
#import bevy_pbr::mesh_view_bindings::light_probes
#import bevy_pbr::mesh_view_bindings::environment_map_uniform
#import bevy_pbr::lighting::{F_Schlick_vec, LightingInput, LayerLightingInput, LAYER_BASE, LAYER_CLEARCOAT}
#import bevy_pbr::clustered_forward::ClusterableObjectIndexRanges
struct EnvironmentMapLight {
diffuse: vec3<f32>,
specular: vec3<f32>,
};
struct EnvironmentMapRadiances {
irradiance: vec3<f32>,
radiance: vec3<f32>,
}
// Define two versions of this function, one for the case in which there are
// multiple light probes and one for the case in which only the view light probe
// is present.
#ifdef MULTIPLE_LIGHT_PROBES_IN_ARRAY
fn compute_radiances(
input: LayerLightingInput,
clusterable_object_index_ranges: ptr<function, ClusterableObjectIndexRanges>,
world_position: vec3<f32>,
found_diffuse_indirect: bool,
) -> EnvironmentMapRadiances {
// Unpack.
let N = input.N;
let R = input.R;
let NdotV = input.NdotV;
let perceptual_roughness = input.perceptual_roughness;
let roughness = input.roughness;
var radiances: EnvironmentMapRadiances;
// Search for a reflection probe that contains the fragment.
var query_result = query_light_probe(
world_position,
/*is_irradiance_volume=*/ false,
clusterable_object_index_ranges,
);
// If we didn't find a reflection probe, use the view environment map if applicable.
if (query_result.texture_index < 0) {
query_result.texture_index = light_probes.view_cubemap_index;
query_result.intensity = light_probes.intensity_for_view;
query_result.affects_lightmapped_mesh_diffuse =
light_probes.view_environment_map_affects_lightmapped_mesh_diffuse != 0u;
}
// If there's no cubemap, bail out.
if (query_result.texture_index < 0) {
radiances.irradiance = vec3(0.0);
radiances.radiance = vec3(0.0);
return radiances;
}
// Split-sum approximation for image based lighting: https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
let radiance_level = perceptual_roughness * f32(textureNumLevels(
bindings::specular_environment_maps[query_result.texture_index]) - 1u);
// If we're lightmapped, and we shouldn't accumulate diffuse light from the
// environment map, note that.
var enable_diffuse = !found_diffuse_indirect;
#ifdef LIGHTMAP
enable_diffuse = enable_diffuse && query_result.affects_lightmapped_mesh_diffuse;
#endif // LIGHTMAP
if (enable_diffuse) {
var irradiance_sample_dir = N;
// Rotating the world space ray direction by the environment light map transform matrix, it is
// equivalent to rotating the diffuse environment cubemap itself.
irradiance_sample_dir = (environment_map_uniform.transform * vec4(irradiance_sample_dir, 1.0)).xyz;
// Cube maps are left-handed so we negate the z coordinate.
irradiance_sample_dir.z = -irradiance_sample_dir.z;
radiances.irradiance = textureSampleLevel(
bindings::diffuse_environment_maps[query_result.texture_index],
bindings::environment_map_sampler,
irradiance_sample_dir,
0.0).rgb * query_result.intensity;
}
var radiance_sample_dir = radiance_sample_direction(N, R, roughness);
// Rotating the world space ray direction by the environment light map transform matrix, it is
// equivalent to rotating the specular environment cubemap itself.
radiance_sample_dir = (environment_map_uniform.transform * vec4(radiance_sample_dir, 1.0)).xyz;
// Cube maps are left-handed so we negate the z coordinate.
radiance_sample_dir.z = -radiance_sample_dir.z;
radiances.radiance = textureSampleLevel(
bindings::specular_environment_maps[query_result.texture_index],
bindings::environment_map_sampler,
radiance_sample_dir,
radiance_level).rgb * query_result.intensity;
return radiances;
}
#else // MULTIPLE_LIGHT_PROBES_IN_ARRAY
fn compute_radiances(
input: LayerLightingInput,
clusterable_object_index_ranges: ptr<function, ClusterableObjectIndexRanges>,
world_position: vec3<f32>,
found_diffuse_indirect: bool,
) -> EnvironmentMapRadiances {
// Unpack.
let N = input.N;
let R = input.R;
let NdotV = input.NdotV;
let perceptual_roughness = input.perceptual_roughness;
let roughness = input.roughness;
var radiances: EnvironmentMapRadiances;
if (light_probes.view_cubemap_index < 0) {
radiances.irradiance = vec3(0.0);
radiances.radiance = vec3(0.0);
return radiances;
}
// Split-sum approximation for image based lighting: https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
// Technically we could use textureNumLevels(specular_environment_map) - 1 here, but we use a uniform
// because textureNumLevels() does not work on WebGL2
let radiance_level = perceptual_roughness * f32(light_probes.smallest_specular_mip_level_for_view);
let intensity = light_probes.intensity_for_view;
// If we're lightmapped, and we shouldn't accumulate diffuse light from the
// environment map, note that.
var enable_diffuse = !found_diffuse_indirect;
#ifdef LIGHTMAP
enable_diffuse = enable_diffuse &&
light_probes.view_environment_map_affects_lightmapped_mesh_diffuse;
#endif // LIGHTMAP
if (enable_diffuse) {
var irradiance_sample_dir = N;
// Rotating the world space ray direction by the environment light map transform matrix, it is
// equivalent to rotating the diffuse environment cubemap itself.
irradiance_sample_dir = (environment_map_uniform.transform * vec4(irradiance_sample_dir, 1.0)).xyz;
// Cube maps are left-handed so we negate the z coordinate.
irradiance_sample_dir.z = -irradiance_sample_dir.z;
radiances.irradiance = textureSampleLevel(
bindings::diffuse_environment_map,
bindings::environment_map_sampler,
irradiance_sample_dir,
0.0).rgb * intensity;
}
var radiance_sample_dir = radiance_sample_direction(N, R, roughness);
// Rotating the world space ray direction by the environment light map transform matrix, it is
// equivalent to rotating the specular environment cubemap itself.
radiance_sample_dir = (environment_map_uniform.transform * vec4(radiance_sample_dir, 1.0)).xyz;
// Cube maps are left-handed so we negate the z coordinate.
radiance_sample_dir.z = -radiance_sample_dir.z;
radiances.radiance = textureSampleLevel(
bindings::specular_environment_map,
bindings::environment_map_sampler,
radiance_sample_dir,
radiance_level).rgb * intensity;
return radiances;
}
#endif // MULTIPLE_LIGHT_PROBES_IN_ARRAY
#ifdef STANDARD_MATERIAL_CLEARCOAT
// Adds the environment map light from the clearcoat layer to that of the base
// layer.
fn environment_map_light_clearcoat(
out: ptr<function, EnvironmentMapLight>,
input: ptr<function, LightingInput>,
clusterable_object_index_ranges: ptr<function, ClusterableObjectIndexRanges>,
found_diffuse_indirect: bool,
) {
// Unpack.
let world_position = (*input).P;
let clearcoat_NdotV = (*input).layers[LAYER_CLEARCOAT].NdotV;
let clearcoat_strength = (*input).clearcoat_strength;
// Calculate the Fresnel term `Fc` for the clearcoat layer.
// 0.04 is a hardcoded value for F0 from the Filament spec.
let clearcoat_F0 = vec3<f32>(0.04);
let Fc = F_Schlick_vec(clearcoat_F0, 1.0, clearcoat_NdotV) * clearcoat_strength;
let inv_Fc = 1.0 - Fc;
let clearcoat_radiances = compute_radiances(
(*input).layers[LAYER_CLEARCOAT],
clusterable_object_index_ranges,
world_position,
found_diffuse_indirect,
);
// Composite the clearcoat layer on top of the existing one.
// These formulas are from Filament:
// <https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights/clearcoat>
(*out).diffuse *= inv_Fc;
(*out).specular = (*out).specular * inv_Fc * inv_Fc + clearcoat_radiances.radiance * Fc;
}
#endif // STANDARD_MATERIAL_CLEARCOAT
fn environment_map_light(
input: ptr<function, LightingInput>,
clusterable_object_index_ranges: ptr<function, ClusterableObjectIndexRanges>,
found_diffuse_indirect: bool,
) -> EnvironmentMapLight {
// Unpack.
let roughness = (*input).layers[LAYER_BASE].roughness;
let diffuse_color = (*input).diffuse_color;
let NdotV = (*input).layers[LAYER_BASE].NdotV;
let F_ab = (*input).F_ab;
let F0 = (*input).F0_;
let world_position = (*input).P;
var out: EnvironmentMapLight;
let radiances = compute_radiances(
(*input).layers[LAYER_BASE],
clusterable_object_index_ranges,
world_position,
found_diffuse_indirect,
);
if (all(radiances.irradiance == vec3(0.0)) && all(radiances.radiance == vec3(0.0))) {
out.diffuse = vec3(0.0);
out.specular = vec3(0.0);
return out;
}
// No real world material has specular values under 0.02, so we use this range as a
// "pre-baked specular occlusion" that extinguishes the fresnel term, for artistic control.
// See: https://google.github.io/filament/Filament.html#specularocclusion
let specular_occlusion = saturate(dot(F0, vec3(50.0 * 0.33)));
// Multiscattering approximation: https://www.jcgt.org/published/0008/01/03/paper.pdf
// Useful reference: https://bruop.github.io/ibl
let Fr = max(vec3(1.0 - roughness), F0) - F0;
let kS = F0 + Fr * pow(1.0 - NdotV, 5.0);
let Ess = F_ab.x + F_ab.y;
let FssEss = kS * Ess * specular_occlusion;
let Ems = 1.0 - Ess;
let Favg = F0 + (1.0 - F0) / 21.0;
let Fms = FssEss * Favg / (1.0 - Ems * Favg);
let FmsEms = Fms * Ems;
let Edss = 1.0 - (FssEss + FmsEms);
let kD = diffuse_color * Edss;
if (!found_diffuse_indirect) {
out.diffuse = (FmsEms + kD) * radiances.irradiance;
} else {
out.diffuse = vec3(0.0);
}
out.specular = FssEss * radiances.radiance;
#ifdef STANDARD_MATERIAL_CLEARCOAT
environment_map_light_clearcoat(
&out,
input,
clusterable_object_index_ranges,
found_diffuse_indirect,
);
#endif // STANDARD_MATERIAL_CLEARCOAT
return out;
}
// "Moving Frostbite to Physically Based Rendering 3.0", listing 22
// https://seblagarde.wordpress.com/wp-content/uploads/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf#page=70
fn radiance_sample_direction(N: vec3<f32>, R: vec3<f32>, roughness: f32) -> vec3<f32> {
let smoothness = saturate(1.0 - roughness);
let lerp_factor = smoothness * (sqrt(smoothness) + roughness);
return mix(N, R, lerp_factor);
}