bevy/examples/shader/custom_phase_item.rs
Emerson Coskey bdd3ef71b8
Composable Pipeline Specialization (#17373)
Currently, our specialization API works through a series of wrapper
structs and traits, which make things confusing to follow and difficult
to generalize.

This pr takes a different approach, where "specializers" (types that
implement `Specialize`) are composable, but "flat" rather than composed
of a series of wrappers. The key is that specializers don't *produce*
pipeline descriptors, but instead *modify* existing ones:

```rs
pub trait Specialize<T: Specializable> {
    type Key: SpecializeKey;
    
    fn specialize(
        &self, 
        key: Self::Key, 
        descriptor: &mut T::Descriptor
    ) -> Result<Canonical<Self::Key>, BevyError>;
}
```

This lets us use some derive magic to stick multiple specializers
together:

```rs
pub struct A;
pub struct B;

impl Specialize<RenderPipeline> for A { ... }
impl Specialize<RenderPipeline> for A { ... }

#[derive(Specialize)]
#[specialize(RenderPipeline)]
struct C {
    // specialization is applied in struct field order
    applied_first: A,
    applied_second: B,
}

type C::Key = (A::Key, B::Key);

```

This approach is much easier to understand, IMO, and also lets us
separate concerns better. Specializers can be placed in fully separate
crates/modules, and key computation can be shared as well.

The only real breaking change here is that since specializers only
modify descriptors, we need a "base" descriptor to work off of. This can
either be manually supplied when constructing a `Specializer` (the new
collection replacing `Specialized[Render/Compute]Pipelines`), or
supplied by implementing `HasBaseDescriptor` on a specializer. See
`examples/shader/custom_phase_item.rs` for an example implementation.

## Testing

- Did some simple manual testing of the derive macro, it seems robust.

---

## Showcase

```rs
#[derive(Specialize, HasBaseDescriptor)]
#[specialize(RenderPipeline)]
pub struct SpecializeMeshMaterial<M: Material> {
    // set mesh bind group layout and shader defs
    mesh: SpecializeMesh,
    // set view bind group layout and shader defs
    view: SpecializeView,
    // since type SpecializeMaterial::Key = (), 
    // we can hide it from the wrapper's external API
    #[key(default)]
    // defer to the GetBaseDescriptor impl of SpecializeMaterial, 
    // since it carries the vertex and fragment handles
    #[base_descriptor]
    // set material bind group layout, etc
    material: SpecializeMaterial<M>,
}

// implementation generated by the derive macro
impl <M: Material> Specialize<RenderPipeline> for SpecializeMeshMaterial<M> {
    type Key = (MeshKey, ViewKey);

    fn specialize(
        &self, 
        key: Self::Key, 
        descriptor: &mut RenderPipelineDescriptor
    ) -> Result<Canonical<Self::Key>, BevyError>  {
        let mesh_key = self.mesh.specialize(key.0, descriptor)?;
        let view_key = self.view.specialize(key.1, descriptor)?;
        let _ = self.material.specialize((), descriptor)?;
        Ok((mesh_key, view_key));
    }
}

impl <M: Material> HasBaseDescriptor<RenderPipeline> for SpecializeMeshMaterial<M> {
    fn base_descriptor(&self) -> RenderPipelineDescriptor {
        self.material.base_descriptor()
    }
}
```

---------

Co-authored-by: Tim Overbeek <158390905+Bleachfuel@users.noreply.github.com>
2025-07-01 01:32:44 +00:00

397 lines
14 KiB
Rust

//! Demonstrates how to enqueue custom draw commands in a render phase.
//!
//! This example shows how to use the built-in
//! [`bevy_render::render_phase::BinnedRenderPhase`] functionality with a
//! custom [`RenderCommand`] to allow inserting arbitrary GPU drawing logic
//! into Bevy's pipeline. This is not the only way to add custom rendering code
//! into Bevy—render nodes are another, lower-level method—but it does allow
//! for better reuse of parts of Bevy's built-in mesh rendering logic.
use bevy::{
core_pipeline::core_3d::{Opaque3d, Opaque3dBatchSetKey, Opaque3dBinKey, CORE_3D_DEPTH_FORMAT},
ecs::{
component::Tick,
query::ROQueryItem,
system::{lifetimeless::SRes, SystemParamItem},
},
prelude::*,
render::{
extract_component::{ExtractComponent, ExtractComponentPlugin},
primitives::Aabb,
render_phase::{
AddRenderCommand, BinnedRenderPhaseType, DrawFunctions, InputUniformIndex, PhaseItem,
RenderCommand, RenderCommandResult, SetItemPipeline, TrackedRenderPass,
ViewBinnedRenderPhases,
},
render_resource::{
BufferUsages, Canonical, ColorTargetState, ColorWrites, CompareFunction,
DepthStencilState, FragmentState, GetBaseDescriptor, IndexFormat, MultisampleState,
PipelineCache, PrimitiveState, RawBufferVec, RenderPipeline, RenderPipelineDescriptor,
SpecializedCache, Specializer, SpecializerKey, TextureFormat, VertexAttribute,
VertexBufferLayout, VertexFormat, VertexState, VertexStepMode,
},
renderer::{RenderDevice, RenderQueue},
view::{self, ExtractedView, RenderVisibleEntities, VisibilityClass},
Render, RenderApp, RenderSystems,
},
};
use bytemuck::{Pod, Zeroable};
/// A marker component that represents an entity that is to be rendered using
/// our custom phase item.
///
/// Note the [`ExtractComponent`] trait implementation: this is necessary to
/// tell Bevy that this object should be pulled into the render world. Also note
/// the `on_add` hook, which is needed to tell Bevy's `check_visibility` system
/// that entities with this component need to be examined for visibility.
#[derive(Clone, Component, ExtractComponent)]
#[require(VisibilityClass)]
#[component(on_add = view::add_visibility_class::<CustomRenderedEntity>)]
struct CustomRenderedEntity;
/// A [`RenderCommand`] that binds the vertex and index buffers and issues the
/// draw command for our custom phase item.
struct DrawCustomPhaseItem;
impl<P> RenderCommand<P> for DrawCustomPhaseItem
where
P: PhaseItem,
{
type Param = SRes<CustomPhaseItemBuffers>;
type ViewQuery = ();
type ItemQuery = ();
fn render<'w>(
_: &P,
_: ROQueryItem<'w, '_, Self::ViewQuery>,
_: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
custom_phase_item_buffers: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
// Borrow check workaround.
let custom_phase_item_buffers = custom_phase_item_buffers.into_inner();
// Tell the GPU where the vertices are.
pass.set_vertex_buffer(
0,
custom_phase_item_buffers
.vertices
.buffer()
.unwrap()
.slice(..),
);
// Tell the GPU where the indices are.
pass.set_index_buffer(
custom_phase_item_buffers
.indices
.buffer()
.unwrap()
.slice(..),
0,
IndexFormat::Uint32,
);
// Draw one triangle (3 vertices).
pass.draw_indexed(0..3, 0, 0..1);
RenderCommandResult::Success
}
}
/// The GPU vertex and index buffers for our custom phase item.
///
/// As the custom phase item is a single triangle, these are uploaded once and
/// then left alone.
#[derive(Resource)]
struct CustomPhaseItemBuffers {
/// The vertices for the single triangle.
///
/// This is a [`RawBufferVec`] because that's the simplest and fastest type
/// of GPU buffer, and [`Vertex`] objects are simple.
vertices: RawBufferVec<Vertex>,
/// The indices of the single triangle.
///
/// As above, this is a [`RawBufferVec`] because `u32` values have trivial
/// size and alignment.
indices: RawBufferVec<u32>,
}
/// The CPU-side structure that describes a single vertex of the triangle.
#[derive(Clone, Copy, Pod, Zeroable)]
#[repr(C)]
struct Vertex {
/// The 3D position of the triangle vertex.
position: Vec3,
/// Padding.
pad0: u32,
/// The color of the triangle vertex.
color: Vec3,
/// Padding.
pad1: u32,
}
impl Vertex {
/// Creates a new vertex structure.
const fn new(position: Vec3, color: Vec3) -> Vertex {
Vertex {
position,
color,
pad0: 0,
pad1: 0,
}
}
}
/// The custom draw commands that Bevy executes for each entity we enqueue into
/// the render phase.
type DrawCustomPhaseItemCommands = (SetItemPipeline, DrawCustomPhaseItem);
/// A single triangle's worth of vertices, for demonstration purposes.
static VERTICES: [Vertex; 3] = [
Vertex::new(vec3(-0.866, -0.5, 0.5), vec3(1.0, 0.0, 0.0)),
Vertex::new(vec3(0.866, -0.5, 0.5), vec3(0.0, 1.0, 0.0)),
Vertex::new(vec3(0.0, 1.0, 0.5), vec3(0.0, 0.0, 1.0)),
];
/// The entry point.
fn main() {
let mut app = App::new();
app.add_plugins(DefaultPlugins)
.add_plugins(ExtractComponentPlugin::<CustomRenderedEntity>::default())
.add_systems(Startup, setup);
// We make sure to add these to the render app, not the main app.
app.get_sub_app_mut(RenderApp)
.unwrap()
.init_resource::<SpecializedCache<RenderPipeline, CustomPhaseSpecializer>>()
.add_render_command::<Opaque3d, DrawCustomPhaseItemCommands>()
.add_systems(
Render,
prepare_custom_phase_item_buffers.in_set(RenderSystems::Prepare),
)
.add_systems(Render, queue_custom_phase_item.in_set(RenderSystems::Queue));
app.run();
}
/// Spawns the objects in the scene.
fn setup(mut commands: Commands) {
// Spawn a single entity that has custom rendering. It'll be extracted into
// the render world via [`ExtractComponent`].
commands.spawn((
Visibility::default(),
Transform::default(),
// This `Aabb` is necessary for the visibility checks to work.
Aabb {
center: Vec3A::ZERO,
half_extents: Vec3A::splat(0.5),
},
CustomRenderedEntity,
));
// Spawn the camera.
commands.spawn((
Camera3d::default(),
Transform::from_xyz(0.0, 0.0, 1.0).looking_at(Vec3::ZERO, Vec3::Y),
));
}
/// Creates the [`CustomPhaseItemBuffers`] resource.
///
/// This must be done in a startup system because it needs the [`RenderDevice`]
/// and [`RenderQueue`] to exist, and they don't until [`App::run`] is called.
fn prepare_custom_phase_item_buffers(mut commands: Commands) {
commands.init_resource::<CustomPhaseItemBuffers>();
}
/// A render-world system that enqueues the entity with custom rendering into
/// the opaque render phases of each view.
fn queue_custom_phase_item(
pipeline_cache: Res<PipelineCache>,
mut opaque_render_phases: ResMut<ViewBinnedRenderPhases<Opaque3d>>,
opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
mut specializer: ResMut<SpecializedCache<RenderPipeline, CustomPhaseSpecializer>>,
views: Query<(&ExtractedView, &RenderVisibleEntities, &Msaa)>,
mut next_tick: Local<Tick>,
) {
let draw_custom_phase_item = opaque_draw_functions
.read()
.id::<DrawCustomPhaseItemCommands>();
// Render phases are per-view, so we need to iterate over all views so that
// the entity appears in them. (In this example, we have only one view, but
// it's good practice to loop over all views anyway.)
for (view, view_visible_entities, msaa) in views.iter() {
let Some(opaque_phase) = opaque_render_phases.get_mut(&view.retained_view_entity) else {
continue;
};
// Find all the custom rendered entities that are visible from this
// view.
for &entity in view_visible_entities.get::<CustomRenderedEntity>().iter() {
// Ordinarily, the [`SpecializedRenderPipeline::Key`] would contain
// some per-view settings, such as whether the view is HDR, but for
// simplicity's sake we simply hard-code the view's characteristics,
// with the exception of number of MSAA samples.
let Ok(pipeline_id) = specializer.specialize(&pipeline_cache, CustomPhaseKey(*msaa))
else {
continue;
};
// Bump the change tick in order to force Bevy to rebuild the bin.
let this_tick = next_tick.get() + 1;
next_tick.set(this_tick);
// Add the custom render item. We use the
// [`BinnedRenderPhaseType::NonMesh`] type to skip the special
// handling that Bevy has for meshes (preprocessing, indirect
// draws, etc.)
//
// The asset ID is arbitrary; we simply use [`AssetId::invalid`],
// but you can use anything you like. Note that the asset ID need
// not be the ID of a [`Mesh`].
opaque_phase.add(
Opaque3dBatchSetKey {
draw_function: draw_custom_phase_item,
pipeline: pipeline_id,
material_bind_group_index: None,
lightmap_slab: None,
vertex_slab: default(),
index_slab: None,
},
Opaque3dBinKey {
asset_id: AssetId::<Mesh>::invalid().untyped(),
},
entity,
InputUniformIndex::default(),
BinnedRenderPhaseType::NonMesh,
*next_tick,
);
}
}
}
/// Holds a reference to our shader.
///
/// This is loaded at app creation time.
struct CustomPhaseSpecializer {
shader: Handle<Shader>,
}
impl FromWorld for CustomPhaseSpecializer {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
Self {
shader: asset_server.load("shaders/custom_phase_item.wgsl"),
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, SpecializerKey)]
struct CustomPhaseKey(Msaa);
impl Specializer<RenderPipeline> for CustomPhaseSpecializer {
type Key = CustomPhaseKey;
fn specialize(
&self,
key: Self::Key,
descriptor: &mut RenderPipelineDescriptor,
) -> Result<Canonical<Self::Key>, BevyError> {
descriptor.multisample.count = key.0.samples();
Ok(key)
}
}
impl GetBaseDescriptor<RenderPipeline> for CustomPhaseSpecializer {
fn get_base_descriptor(&self) -> RenderPipelineDescriptor {
RenderPipelineDescriptor {
label: Some("custom render pipeline".into()),
layout: vec![],
push_constant_ranges: vec![],
vertex: VertexState {
shader: self.shader.clone(),
shader_defs: vec![],
entry_point: "vertex".into(),
buffers: vec![VertexBufferLayout {
array_stride: size_of::<Vertex>() as u64,
step_mode: VertexStepMode::Vertex,
// This needs to match the layout of [`Vertex`].
attributes: vec![
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 0,
shader_location: 0,
},
VertexAttribute {
format: VertexFormat::Float32x3,
offset: 16,
shader_location: 1,
},
],
}],
},
fragment: Some(FragmentState {
shader: self.shader.clone(),
shader_defs: vec![],
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
// Ordinarily, you'd want to check whether the view has the
// HDR format and substitute the appropriate texture format
// here, but we omit that for simplicity.
format: TextureFormat::bevy_default(),
blend: None,
write_mask: ColorWrites::ALL,
})],
}),
primitive: PrimitiveState::default(),
// Note that if your view has no depth buffer this will need to be
// changed.
depth_stencil: Some(DepthStencilState {
format: CORE_3D_DEPTH_FORMAT,
depth_write_enabled: false,
depth_compare: CompareFunction::Always,
stencil: default(),
bias: default(),
}),
multisample: MultisampleState {
count: 0,
mask: !0,
alpha_to_coverage_enabled: false,
},
zero_initialize_workgroup_memory: false,
}
}
}
impl FromWorld for CustomPhaseItemBuffers {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
let render_queue = world.resource::<RenderQueue>();
// Create the vertex and index buffers.
let mut vbo = RawBufferVec::new(BufferUsages::VERTEX);
let mut ibo = RawBufferVec::new(BufferUsages::INDEX);
for vertex in &VERTICES {
vbo.push(*vertex);
}
for index in 0..3 {
ibo.push(index);
}
// These two lines are required in order to trigger the upload to GPU.
vbo.write_buffer(render_device, render_queue);
ibo.write_buffer(render_device, render_queue);
CustomPhaseItemBuffers {
vertices: vbo,
indices: ibo,
}
}
}